Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus.Environ Pollut. 2018 Feb; 233:8-15.EP
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) is a novel alternative compound for perfluorooctane sulfonate (PFOS), with its environmental risk not well known. The bioaccumulation and toxic effects of Cl-PFESA in the freshwater alga is crucial for the understanding of its potential hazards to the aquatic environment. Scenedesmus obliquus was exposed to Cl-PFESA at ng L-1 to mg L-1, with the exposure regime beginning at the environmentally relevant level. The total log BAF of Cl-PFESA in S. obliquus was 4.66, higher than the reported log BAF of PFOS in the freshwater plankton (2.2-3.2). Cl-PFESA adsorbed to the cell surface accounted for 33.5-68.3% of the total concentrations. The IC50 of Cl-PFESA to algal growth was estimated to be 40.3 mg L-1. Significant changes in algal growth rate and chlorophyll a/b contents were observed at 11.6 mg L-1 and 13.4 mg L-1 of Cl-PFESA, respectively. The sample cell membrane permeability, measured by the fluorescein diacetate hydrolyzation, was increased by Cl-PFESA at 5.42 mg L-1. The mitochondrial membrane potential, measured by Rh123 staining, was also increased, indicating the hyperpolarization induced by Cl-PFESA. The increasing ROS and MDA contents, along with the enhanced SOD, CAT activity, and GSH contents, suggested that Cl-PFESA caused oxidative damage in the algal cells. It is less possible that current Cl-PFESA pollution in surface water posed obvious toxic effects on the green algae. However, the bioaccumulation of Cl-PFESA in algae would contribute to its biomagnification in the aquatic food chain and its effects on membrane property could potentially increase the accessibility and toxicity of other coexisting pollutants.