Tags

Type your tag names separated by a space and hit enter

Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport.
Am J Physiol 1989; 256(3 Pt 1):C688-93AJ

Abstract

Because the pulmonary alveolar epithelium separates air spaces from a fluid-filled compartment, it is expected that this barrier would be highly resistant to the flow of solutes and water. Investigation of alveolar epithelial resistance has been limited due to the complex anatomy of adult mammalian lung. Previous efforts to study isolated alveolar epithelium cultured on porous substrata yielded leaky monolayers. In this study, alveolar epithelial cells isolated from rat lungs and grown on tissue culture-treated Nucleopore filters resulted in tight monolayers with transepithelial resistance greater than 2,000 omega.cm2. Changes in bioelectric properties of these alveolar epithelial monolayers in response to ouabain, amiloride, and terbutaline are consistent with active sodium transport across a polarized barrier. 22Na flux measurements under short-circuit conditions directly confirm net transepithelial absorption of sodium by alveolar epithelial cells in the apical to basolateral direction, comparable to the observed short-circuit current (4.37 microA/cm2). The transport properties of these tight monolayers may be representative of the characteristics of the mammalian alveolar epithelial barrier in vivo.

Authors+Show Affiliations

Will Rogers Institute Pulmonary Research Program, Division of Pulmonary and Critical Care Medicine, Cornell University Medical College, New York, New York 10021.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

2923201

Citation

Cheek, J M., et al. "Tight Monolayers of Rat Alveolar Epithelial Cells: Bioelectric Properties and Active Sodium Transport." The American Journal of Physiology, vol. 256, no. 3 Pt 1, 1989, pp. C688-93.
Cheek JM, Kim KJ, Crandall ED. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am J Physiol. 1989;256(3 Pt 1):C688-93.
Cheek, J. M., Kim, K. J., & Crandall, E. D. (1989). Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. The American Journal of Physiology, 256(3 Pt 1), pp. C688-93.
Cheek JM, Kim KJ, Crandall ED. Tight Monolayers of Rat Alveolar Epithelial Cells: Bioelectric Properties and Active Sodium Transport. Am J Physiol. 1989;256(3 Pt 1):C688-93. PubMed PMID: 2923201.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. AU - Cheek,J M, AU - Kim,K J, AU - Crandall,E D, PY - 1989/3/1/pubmed PY - 1989/3/1/medline PY - 1989/3/1/entrez SP - C688 EP - 93 JF - The American journal of physiology JO - Am. J. Physiol. VL - 256 IS - 3 Pt 1 N2 - Because the pulmonary alveolar epithelium separates air spaces from a fluid-filled compartment, it is expected that this barrier would be highly resistant to the flow of solutes and water. Investigation of alveolar epithelial resistance has been limited due to the complex anatomy of adult mammalian lung. Previous efforts to study isolated alveolar epithelium cultured on porous substrata yielded leaky monolayers. In this study, alveolar epithelial cells isolated from rat lungs and grown on tissue culture-treated Nucleopore filters resulted in tight monolayers with transepithelial resistance greater than 2,000 omega.cm2. Changes in bioelectric properties of these alveolar epithelial monolayers in response to ouabain, amiloride, and terbutaline are consistent with active sodium transport across a polarized barrier. 22Na flux measurements under short-circuit conditions directly confirm net transepithelial absorption of sodium by alveolar epithelial cells in the apical to basolateral direction, comparable to the observed short-circuit current (4.37 microA/cm2). The transport properties of these tight monolayers may be representative of the characteristics of the mammalian alveolar epithelial barrier in vivo. SN - 0002-9513 UR - https://www.unboundmedicine.com/medline/citation/2923201/Tight_monolayers_of_rat_alveolar_epithelial_cells:_bioelectric_properties_and_active_sodium_transport_ L2 - http://journals.physiology.org/doi/full/10.1152/ajpcell.1989.256.3.C688?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -