Tags

Type your tag names separated by a space and hit enter

Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults.
PLoS One. 2017; 12(12):e0190208.Plos

Abstract

RNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway. In the current study, we identified and characterized additional members of the Argonaute and Dicer gene families, namely Ago1, Ago3, Aubergine, and Dcr1, in a previously developed WCR transcriptome. We also identified a Drosha homolog in the same transcriptome. We evaluated the impacts on WCR adult fitness associated with the dsRNA-mediated knockdown of Ago1, Ago2, Dcr1, Dcr2, and Drosha genes. Among these putative RNAi pathway genes, only the knockdown of Ago1 incurred significant fitness costs such as reduced survival and oviposition rate, as well as decreased egg viability. The present study, to our knowledge, represents the first report showing that Ago1 is critical to the survival of insect adults. Our findings suggest that Ago1 plays an essential role in broader life stages of an insect than previously thought. Importantly, since fitness costs were not observed, downregulation or loss of function of RNAi pathway genes such as Ago2 or Dcr2 may confer resistance to pest control measures that rely on the normal functions of these genes. However, the precise roles of these genes under field conditions (i.e., in the presence of possible viral pathogens) requires further investigation.

Authors+Show Affiliations

Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America.Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America.Dow AgroSciences LLC, Indianapolis, Indiana, United States of America.Dow AgroSciences LLC, Indianapolis, Indiana, United States of America.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America.Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

29267401

Citation

Wu, Ke, et al. "Distinct Fitness Costs Associated With the Knockdown of RNAi Pathway Genes in Western Corn Rootworm Adults." PloS One, vol. 12, no. 12, 2017, pp. e0190208.
Wu K, Camargo C, Fishilevich E, et al. Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults. PLoS One. 2017;12(12):e0190208.
Wu, K., Camargo, C., Fishilevich, E., Narva, K. E., Chen, X., Taylor, C. E., & Siegfried, B. D. (2017). Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults. PloS One, 12(12), e0190208. https://doi.org/10.1371/journal.pone.0190208
Wu K, et al. Distinct Fitness Costs Associated With the Knockdown of RNAi Pathway Genes in Western Corn Rootworm Adults. PLoS One. 2017;12(12):e0190208. PubMed PMID: 29267401.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults. AU - Wu,Ke, AU - Camargo,Carolina, AU - Fishilevich,Elane, AU - Narva,Kenneth E, AU - Chen,Xiuping, AU - Taylor,Caitlin E, AU - Siegfried,Blair D, Y1 - 2017/12/21/ PY - 2017/09/20/received PY - 2017/12/11/accepted PY - 2017/12/22/entrez PY - 2017/12/22/pubmed PY - 2018/1/18/medline SP - e0190208 EP - e0190208 JF - PloS one JO - PLoS One VL - 12 IS - 12 N2 - RNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway. In the current study, we identified and characterized additional members of the Argonaute and Dicer gene families, namely Ago1, Ago3, Aubergine, and Dcr1, in a previously developed WCR transcriptome. We also identified a Drosha homolog in the same transcriptome. We evaluated the impacts on WCR adult fitness associated with the dsRNA-mediated knockdown of Ago1, Ago2, Dcr1, Dcr2, and Drosha genes. Among these putative RNAi pathway genes, only the knockdown of Ago1 incurred significant fitness costs such as reduced survival and oviposition rate, as well as decreased egg viability. The present study, to our knowledge, represents the first report showing that Ago1 is critical to the survival of insect adults. Our findings suggest that Ago1 plays an essential role in broader life stages of an insect than previously thought. Importantly, since fitness costs were not observed, downregulation or loss of function of RNAi pathway genes such as Ago2 or Dcr2 may confer resistance to pest control measures that rely on the normal functions of these genes. However, the precise roles of these genes under field conditions (i.e., in the presence of possible viral pathogens) requires further investigation. SN - 1932-6203 UR - https://www.unboundmedicine.com/medline/citation/29267401/Distinct_fitness_costs_associated_with_the_knockdown_of_RNAi_pathway_genes_in_western_corn_rootworm_adults_ DB - PRIME DP - Unbound Medicine ER -