Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 12 22; 12:CD011535.CD
BACKGROUND
Psoriasis is an immune-mediated disease for which some people have a genetic predisposition. The condition manifests in inflammatory effects on either the skin or joints, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. Several randomised controlled trials (RCTs) have compared the efficacy of the different systemic treatments in psoriasis against placebo. However, the relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head to head, which is why we chose to conduct a network meta-analysis.
OBJECTIVES
To compare the efficacy and safety of conventional systemic agents (acitretin, ciclosporin, fumaric acid esters, methotrexate), small molecules (apremilast, tofacitinib, ponesimod), anti-TNF alpha (etanercept, infliximab, adalimumab, certolizumab), anti-IL12/23 (ustekinumab), anti-IL17 (secukinumab, ixekizumab, brodalumab), anti-IL23 (guselkumab, tildrakizumab), and other biologics (alefacept, itolizumab) for patients with moderate to severe psoriasis and to provide a ranking of these treatments according to their efficacy and safety.
SEARCH METHODS
We searched the following databases to December 2016: the Cochrane Skin Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and LILACS. We also searched five trials registers and the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) reports. We checked the reference lists of included and excluded studies for further references to relevant RCTs. We searched the trial results databases of a number of pharmaceutical companies and handsearched the conference proceedings of a number of dermatology meetings.
SELECTION CRITERIA
Randomised controlled trials (RCTs) of systemic and biological treatments in adults (over 18 years of age) with moderate to severe plaque psoriasis or psoriatic arthritis whose skin had been clinically diagnosed with moderate to severe psoriasis, at any stage of treatment, in comparison to placebo or another active agent.
DATA COLLECTION AND ANALYSIS
Three groups of two review authors independently undertook study selection, data extraction, 'Risk of bias' assessment, and analyses. We synthesised the data using pair-wise and network meta-analysis (NMA) to compare the treatments of interest and rank them according to their effectiveness (as measured by the Psoriasis Area and Severity Index score (PASI) 90) and acceptability (the inverse of serious adverse effects). We assessed the certainty of the body of evidence from the NMA for the two primary outcomes, according to GRADE; we evaluated evidence as either very low, low, moderate, or high. We contacted study authors when data were unclear or missing.
MAIN RESULTS
We included 109 studies in our review (39,882 randomised participants, 68% men, all recruited from a hospital). The overall average age was 44 years; the overall mean PASI score at baseline was 20 (range: 9.5 to 39). Most of these studies were placebo controlled (67%), 23% were head-to-head studies, and 10% were multi-armed studies with both an active comparator and placebo. We have assessed all treatments listed in the objectives (19 in total). In all, 86 trials were multicentric trials (two to 231 centres). All of the trials included in this review were limited to the induction phase (assessment at less than 24 weeks after randomisation); in fact, all trials included in the network meta-analysis were measured between 12 and 16 weeks after randomisation. We assessed the majority of studies (48/109) as being at high risk of bias; 38 were assessed as at an unclear risk, and 23, low risk.Network meta-analysis at class level showed that all of the interventions (conventional systemic agents, small molecules, and biological treatments) were significantly more effective than placebo in terms of reaching PASI 90.In terms of reaching PASI 90, the biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha were significantly more effective than the small molecules and the conventional systemic agents. Small molecules were associated with a higher chance of reaching PASI 90 compared to conventional systemic agents.At drug level, in terms of reaching PASI 90, all of the anti-IL17 agents and guselkumab (an anti-IL23 drug) were significantly more effective than the anti-TNF alpha agents infliximab, adalimumab, and etanercept, but not certolizumab. Ustekinumab was superior to etanercept. No clear difference was shown between infliximab, adalimumab, and etanercept. Only one trial assessed the efficacy of infliximab in this network; thus, these results have to be interpreted with caution. Tofacitinib was significantly superior to methotrexate, and no clear difference was shown between any of the other small molecules versus conventional treatments.Network meta-analysis also showed that ixekizumab, secukinumab, brodalumab, guselkumab, certolizumab, and ustekinumab outperformed other drugs when compared to placebo in terms of reaching PASI 90: the most effective drug was ixekizumab (risk ratio (RR) 32.45, 95% confidence interval (CI) 23.61 to 44.60; Surface Under the Cumulative Ranking (SUCRA) = 94.3; high-certainty evidence), followed by secukinumab (RR 26.55, 95% CI 20.32 to 34.69; SUCRA = 86.5; high-certainty evidence), brodalumab (RR 25.45, 95% CI 18.74 to 34.57; SUCRA = 84.3; moderate-certainty evidence), guselkumab (RR 21.03, 95% CI 14.56 to 30.38; SUCRA = 77; moderate-certainty evidence), certolizumab (RR 24.58, 95% CI 3.46 to 174.73; SUCRA = 75.7; moderate-certainty evidence), and ustekinumab (RR 19.91, 95% CI 15.11 to 26.23; SUCRA = 72.6; high-certainty evidence).We found no significant difference between all of the interventions and the placebo regarding the risk of serious adverse effects (SAEs): the relative ranking strongly suggested that methotrexate was associated with the best safety profile regarding all of the SAEs (RR 0.23, 95% CI 0.05 to 0.99; SUCRA = 90.7; moderate-certainty evidence), followed by ciclosporin (RR 0.23, 95% CI 0.01 to 5.10; SUCRA = 78.2; very low-certainty evidence), certolizumab (RR 0.49, 95% CI 0.10 to 2.36; SUCRA = 70.9; moderate-certainty evidence), infliximab (RR 0.56, 95% CI 0.10 to 3.00; SUCRA = 64.4; very low-certainty evidence), alefacept (RR 0.72, 95% CI 0.34 to 1.55; SUCRA = 62.6; low-certainty evidence), and fumaric acid esters (RR 0.77, 95% CI 0.30 to 1.99; SUCRA = 57.7; very low-certainty evidence). Major adverse cardiac events, serious infections, or malignancies were reported in both the placebo and intervention groups. Nevertheless, the SAEs analyses were based on a very low number of events with low to very low certainty for just over half of the treatment estimates in total, moderate for the others. Thus, the results have to be considered with caution.Considering both efficacy (PASI 90 outcome) and acceptability (SAEs outcome), highly effective treatments also had more SAEs compared to the other treatments, and ustekinumab, infliximab, and certolizumab appeared to have the better trade-off between efficacy and acceptability.Regarding the other efficacy outcomes, PASI 75 and Physician Global Assessment (PGA) 0/1, the results were very similar to the results for PASI 90.Information on quality of life was often poorly reported and was absent for a third of the interventions.