Tags

Type your tag names separated by a space and hit enter

Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103.
Phytopathology. 2018 Jun; 108(6):737-747.P

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

Authors+Show Affiliations

First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

29303685

Citation

Feng, Junyan, et al. "Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103." Phytopathology, vol. 108, no. 6, 2018, pp. 737-747.
Feng J, Wang M, See DR, et al. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. Phytopathology. 2018;108(6):737-747.
Feng, J., Wang, M., See, D. R., Chao, S., Zheng, Y., & Chen, X. (2018). Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. Phytopathology, 108(6), 737-747. https://doi.org/10.1094/PHYTO-11-17-0375-R
Feng J, et al. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. Phytopathology. 2018;108(6):737-747. PubMed PMID: 29303685.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. AU - Feng,Junyan, AU - Wang,Meinan, AU - See,Deven R, AU - Chao,Shiaoman, AU - Zheng,Youliang, AU - Chen,Xianming, Y1 - 2018/04/25/ PY - 2018/1/6/pubmed PY - 2018/8/10/medline PY - 2018/1/6/entrez SP - 737 EP - 747 JF - Phytopathology JO - Phytopathology VL - 108 IS - 6 N2 - Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars. SN - 0031-949X UR - https://www.unboundmedicine.com/medline/citation/29303685/Characterization_of_Novel_Gene_Yr79_and_Four_Additional_Quantitative_Trait_Loci_for_All_Stage_and_High_Temperature_Adult_Plant_Resistance_to_Stripe_Rust_in_Spring_Wheat_PI_182103_ DB - PRIME DP - Unbound Medicine ER -