Tags

Type your tag names separated by a space and hit enter

Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.
ACS Appl Mater Interfaces 2018; 10(13):10851-10859AA

Abstract

Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO2 are high-performance supercapacitor electrode materials. In the electrolyte of H2SO4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm-2 (for single electrode), 157 μW h cm-2, and 10372 μW cm-2, respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm-2 and a power density of 16120 μW cm-2. On the basis of the ACFC/PANI/CNTs/MnO2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H2SO4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

Authors+Show Affiliations

Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China.Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China. School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China.Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China.Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China. School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China.Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China. School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China.Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China. School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

29528208

Citation

Wang, Jinjie, et al. "Polymorphous Supercapacitors Constructed From Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles." ACS Applied Materials & Interfaces, vol. 10, no. 13, 2018, pp. 10851-10859.
Wang J, Dong L, Xu C, et al. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles. ACS Appl Mater Interfaces. 2018;10(13):10851-10859.
Wang, J., Dong, L., Xu, C., Ren, D., Ma, X., & Kang, F. (2018). Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles. ACS Applied Materials & Interfaces, 10(13), pp. 10851-10859. doi:10.1021/acsami.7b19195.
Wang J, et al. Polymorphous Supercapacitors Constructed From Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles. ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10851-10859. PubMed PMID: 29528208.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles. AU - Wang,Jinjie, AU - Dong,Liubing, AU - Xu,Chengjun, AU - Ren,Danyang, AU - Ma,Xinpei, AU - Kang,Feiyu, Y1 - 2018/03/20/ PY - 2018/3/13/pubmed PY - 2018/3/13/medline PY - 2018/3/13/entrez KW - activated carbon fiber cloth KW - fiber-like electrode KW - flexible supercapacitor KW - polymorphous supercapacitors KW - textile electrode SP - 10851 EP - 10859 JF - ACS applied materials & interfaces JO - ACS Appl Mater Interfaces VL - 10 IS - 13 N2 - Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO2 are high-performance supercapacitor electrode materials. In the electrolyte of H2SO4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm-2 (for single electrode), 157 μW h cm-2, and 10372 μW cm-2, respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm-2 and a power density of 16120 μW cm-2. On the basis of the ACFC/PANI/CNTs/MnO2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H2SO4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors. SN - 1944-8252 UR - https://www.unboundmedicine.com/medline/citation/29528208/Polymorphous_Supercapacitors_Constructed_from_Flexible_Three_Dimensional_Carbon_Network/Polyaniline/MnO2_Composite_Textiles_ L2 - https://dx.doi.org/10.1021/acsami.7b19195 DB - PRIME DP - Unbound Medicine ER -