Tags

Type your tag names separated by a space and hit enter

In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.
Int J Nanomedicine. 2018; 13:2349-2363.IJ

Abstract

Introduction

One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells.

Purpose

In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo.

Materials and methods

The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared.

Results

We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models.

Conclusion

Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains.

Authors+Show Affiliations

Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México. Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México. Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México. Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México. Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México.Centro de Investigación en Química Aplicada, Saltillo, Coah, México.Centro de Investigación en Química Aplicada, Saltillo, Coah, México.Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Colonia Ciudad Universitaria, Aguascalientes, México.Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Colonia Ciudad Universitaria, Aguascalientes, México.Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Colonia Ciudad Universitaria, Aguascalientes, México.Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Colonia Ciudad Universitaria, Aguascalientes, Mexico.Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Colonia Ciudad Universitaria, Aguascalientes, Mexico.Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México. Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

29713166

Citation

Escárcega-González, Carlos Enrique, et al. "In Vivo Antimicrobial Activity of Silver Nanoparticles Produced Via a Green Chemistry Synthesis Using Acacia Rigidula as a Reducing and Capping Agent." International Journal of Nanomedicine, vol. 13, 2018, pp. 2349-2363.
Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine. 2018;13:2349-2363.
Escárcega-González, C. E., Garza-Cervantes, J. A., Vázquez-Rodríguez, A., Montelongo-Peralta, L. Z., Treviño-González, M. T., Díaz Barriga Castro, E., Saucedo-Salazar, E. M., Chávez Morales, R. M., Regalado Soto, D. I., Treviño González, F. M., Carrazco Rosales, J. L., Cruz, R. V., & Morones-Ramírez, J. R. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International Journal of Nanomedicine, 13, 2349-2363. https://doi.org/10.2147/IJN.S160605
Escárcega-González CE, et al. In Vivo Antimicrobial Activity of Silver Nanoparticles Produced Via a Green Chemistry Synthesis Using Acacia Rigidula as a Reducing and Capping Agent. Int J Nanomedicine. 2018;13:2349-2363. PubMed PMID: 29713166.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. AU - Escárcega-González,Carlos Enrique, AU - Garza-Cervantes,J A, AU - Vázquez-Rodríguez,A, AU - Montelongo-Peralta,Liliana Zulem, AU - Treviño-González,M T, AU - Díaz Barriga Castro,E, AU - Saucedo-Salazar,E M, AU - Chávez Morales,R M, AU - Regalado Soto,D I, AU - Treviño González,F M, AU - Carrazco Rosales,J L, AU - Cruz,Rocío Villalobos, AU - Morones-Ramírez,José Rubén, Y1 - 2018/04/17/ PY - 2018/5/2/entrez PY - 2018/5/2/pubmed PY - 2018/6/12/medline KW - green synthesis KW - in vitro antibacterial activity KW - in vivo antibacterial activity KW - silver nanoparticles KW - skin infection KW - toxicological study SP - 2349 EP - 2363 JF - International journal of nanomedicine JO - Int J Nanomedicine VL - 13 N2 - Introduction: One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. Purpose: In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. Materials and methods: The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared. Results: We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models. Conclusion: Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains. SN - 1178-2013 UR - https://www.unboundmedicine.com/medline/citation/29713166/In_vivo_antimicrobial_activity_of_silver_nanoparticles_produced_via_a_green_chemistry_synthesis_using_Acacia_rigidula_as_a_reducing_and_capping_agent_ L2 - https://dx.doi.org/10.2147/IJN.S160605 DB - PRIME DP - Unbound Medicine ER -