Tags

Type your tag names separated by a space and hit enter

Genetic effects of fatty acid composition in muscle of Atlantic salmon.
Genet Sel Evol. 2018 05 02; 50(1):23.GS

Abstract

BACKGROUND

The replacement of fish oil (FO) and fishmeal with plant ingredients in the diet of farmed Atlantic salmon has resulted in reduced levels of the health-promoting long-chain polyunsaturated omega-3 fatty acids (n-3 LC-PUFA) eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in their filets. Previous studies showed the potential of selective breeding to increase n-3 LC-PUFA levels in salmon tissues, but knowledge on the genetic parameters for individual muscle fatty acids (FA) and their relationships with other traits is still lacking. Thus, we estimated genetic parameters for muscle content of individual FA, and their relationships with lipid deposition traits, muscle pigmentation, sea lice and pancreas disease in slaughter-sized Atlantic salmon. Our aim was to evaluate the selection potential for increased n-3 LC-PUFA content and provide insight into FA metabolism in Atlantic salmon muscle.

RESULTS

Among the n-3 PUFA, proportional contents of alpha-linolenic acid (ALA; 18:3n-3) and DHA had the highest heritability (0.26) and EPA the lowest (0.09). Genetic correlations of EPA and DHA proportions with muscle fat differed considerably, 0.60 and 0.01, respectively. The genetic correlation of DHA proportion with visceral fat was positive and high (0.61), whereas that of EPA proportion with lice density was negative. FA that are in close proximity along the bioconversion pathway showed positive correlations with each other, whereas the start (ALA) and end-point (DHA) of the pathway were negatively correlated (- 0.28), indicating active bioconversion of ALA to DHA in the muscle of fish fed high FO-diet.

CONCLUSIONS

Since contents of individual FA in salmon muscle show additive genetic variation, changing FA composition by selective breeding is possible. Taken together, our results show that the heritabilities of individual n-3 LC-PUFA and their genetic correlations with other traits vary, which indicates that they play different roles in muscle lipid metabolism, and that proportional muscle contents of EPA and DHA are linked to body fat deposition. Thus, different selection strategies can be applied in order to increase the content of healthy omega-3 FAin the salmon muscle. We recommend selection for the proportion of EPA + DHA in the muscle because they are both essential FA and because such selection has no clear detrimental effects on other traits.

Authors+Show Affiliations

Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway. siri.storteig.horn@nofima.no. Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway. siri.storteig.horn@nofima.no.Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway.Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway.SalmoBreed AS, Sandviksboder 3A, 5035, Bergen, Norway.Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

29720078

Citation

Horn, Siri S., et al. "Genetic Effects of Fatty Acid Composition in Muscle of Atlantic Salmon." Genetics, Selection, Evolution : GSE, vol. 50, no. 1, 2018, p. 23.
Horn SS, Ruyter B, Meuwissen THE, et al. Genetic effects of fatty acid composition in muscle of Atlantic salmon. Genet Sel Evol. 2018;50(1):23.
Horn, S. S., Ruyter, B., Meuwissen, T. H. E., Hillestad, B., & Sonesson, A. K. (2018). Genetic effects of fatty acid composition in muscle of Atlantic salmon. Genetics, Selection, Evolution : GSE, 50(1), 23. https://doi.org/10.1186/s12711-018-0394-x
Horn SS, et al. Genetic Effects of Fatty Acid Composition in Muscle of Atlantic Salmon. Genet Sel Evol. 2018 05 2;50(1):23. PubMed PMID: 29720078.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Genetic effects of fatty acid composition in muscle of Atlantic salmon. AU - Horn,Siri S, AU - Ruyter,Bente, AU - Meuwissen,Theo H E, AU - Hillestad,Borghild, AU - Sonesson,Anna K, Y1 - 2018/05/02/ PY - 2017/11/02/received PY - 2018/04/24/accepted PY - 2018/5/4/entrez PY - 2018/5/4/pubmed PY - 2018/10/3/medline SP - 23 EP - 23 JF - Genetics, selection, evolution : GSE JO - Genet. Sel. Evol. VL - 50 IS - 1 N2 - BACKGROUND: The replacement of fish oil (FO) and fishmeal with plant ingredients in the diet of farmed Atlantic salmon has resulted in reduced levels of the health-promoting long-chain polyunsaturated omega-3 fatty acids (n-3 LC-PUFA) eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in their filets. Previous studies showed the potential of selective breeding to increase n-3 LC-PUFA levels in salmon tissues, but knowledge on the genetic parameters for individual muscle fatty acids (FA) and their relationships with other traits is still lacking. Thus, we estimated genetic parameters for muscle content of individual FA, and their relationships with lipid deposition traits, muscle pigmentation, sea lice and pancreas disease in slaughter-sized Atlantic salmon. Our aim was to evaluate the selection potential for increased n-3 LC-PUFA content and provide insight into FA metabolism in Atlantic salmon muscle. RESULTS: Among the n-3 PUFA, proportional contents of alpha-linolenic acid (ALA; 18:3n-3) and DHA had the highest heritability (0.26) and EPA the lowest (0.09). Genetic correlations of EPA and DHA proportions with muscle fat differed considerably, 0.60 and 0.01, respectively. The genetic correlation of DHA proportion with visceral fat was positive and high (0.61), whereas that of EPA proportion with lice density was negative. FA that are in close proximity along the bioconversion pathway showed positive correlations with each other, whereas the start (ALA) and end-point (DHA) of the pathway were negatively correlated (- 0.28), indicating active bioconversion of ALA to DHA in the muscle of fish fed high FO-diet. CONCLUSIONS: Since contents of individual FA in salmon muscle show additive genetic variation, changing FA composition by selective breeding is possible. Taken together, our results show that the heritabilities of individual n-3 LC-PUFA and their genetic correlations with other traits vary, which indicates that they play different roles in muscle lipid metabolism, and that proportional muscle contents of EPA and DHA are linked to body fat deposition. Thus, different selection strategies can be applied in order to increase the content of healthy omega-3 FAin the salmon muscle. We recommend selection for the proportion of EPA + DHA in the muscle because they are both essential FA and because such selection has no clear detrimental effects on other traits. SN - 1297-9686 UR - https://www.unboundmedicine.com/medline/citation/29720078/Genetic_effects_of_fatty_acid_composition_in_muscle_of_Atlantic_salmon_ L2 - https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018-0394-x DB - PRIME DP - Unbound Medicine ER -