Tags

Type your tag names separated by a space and hit enter

Elastic capsules at liquid-liquid interfaces.
Soft Matter. 2018 Jul 11; 14(27):5665-5685.SM

Abstract

We investigate the deformation of elastic microcapsules adsorbed at liquid-liquid interfaces. An initially spherical elastic capsule at a liquid-liquid interface undergoes circumferential stretching due to the liquid-liquid surface tension and becomes lens- or discus-shaped, depending on its bending rigidity. The resulting elastic capsule deformation is qualitatively similar, but distinct from the deformation of a liquid droplet into a liquid lens at a liquid-liquid interface. We discuss the deformed shapes of droplets and capsules adsorbed at liquid-liquid interfaces for a whole range of different surface elasticities: from droplets (only surface tension) deforming into liquid lenses, droplets with a Hookean membrane (finite stretching modulus, zero bending modulus) deforming into elastic lenses, to microcapsules (finite stretching and bending modulus) deforming into rounded elastic lenses. We calculate capsule shapes at liquid-liquid interfaces numerically using shape equations from nonlinear elastic shell theory. Finally, we present theoretical results for the contact angle (or the capsule height) and the maximal capsule curvature at the three phase contact line. These results can be used to infer information about the elastic moduli from optical measurements. During capsule deformation into a lens-like shape, surface energy of the liquid-liquid interface is converted into elastic energy of the capsule shell giving rise to an overall adsorption energy gain by deformation. Soft hollow capsules exhibit a pronounced increase of the adsorption energy as compared to filled soft particles and, thus, are attractive candidates as foam and emulsion stabilizers.

Authors+Show Affiliations

Physics Department, TU Dortmund University, 44221 Dortmund, Germany. jan.kierfeld@tu-dortmund.de.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

29946629

Citation

Hegemann, Jonas, et al. "Elastic Capsules at Liquid-liquid Interfaces." Soft Matter, vol. 14, no. 27, 2018, pp. 5665-5685.
Hegemann J, Boltz HH, Kierfeld J. Elastic capsules at liquid-liquid interfaces. Soft Matter. 2018;14(27):5665-5685.
Hegemann, J., Boltz, H. H., & Kierfeld, J. (2018). Elastic capsules at liquid-liquid interfaces. Soft Matter, 14(27), 5665-5685. https://doi.org/10.1039/c8sm00316e
Hegemann J, Boltz HH, Kierfeld J. Elastic Capsules at Liquid-liquid Interfaces. Soft Matter. 2018 Jul 11;14(27):5665-5685. PubMed PMID: 29946629.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Elastic capsules at liquid-liquid interfaces. AU - Hegemann,Jonas, AU - Boltz,Horst-Holger, AU - Kierfeld,Jan, PY - 2018/6/28/pubmed PY - 2018/6/28/medline PY - 2018/6/28/entrez SP - 5665 EP - 5685 JF - Soft matter JO - Soft Matter VL - 14 IS - 27 N2 - We investigate the deformation of elastic microcapsules adsorbed at liquid-liquid interfaces. An initially spherical elastic capsule at a liquid-liquid interface undergoes circumferential stretching due to the liquid-liquid surface tension and becomes lens- or discus-shaped, depending on its bending rigidity. The resulting elastic capsule deformation is qualitatively similar, but distinct from the deformation of a liquid droplet into a liquid lens at a liquid-liquid interface. We discuss the deformed shapes of droplets and capsules adsorbed at liquid-liquid interfaces for a whole range of different surface elasticities: from droplets (only surface tension) deforming into liquid lenses, droplets with a Hookean membrane (finite stretching modulus, zero bending modulus) deforming into elastic lenses, to microcapsules (finite stretching and bending modulus) deforming into rounded elastic lenses. We calculate capsule shapes at liquid-liquid interfaces numerically using shape equations from nonlinear elastic shell theory. Finally, we present theoretical results for the contact angle (or the capsule height) and the maximal capsule curvature at the three phase contact line. These results can be used to infer information about the elastic moduli from optical measurements. During capsule deformation into a lens-like shape, surface energy of the liquid-liquid interface is converted into elastic energy of the capsule shell giving rise to an overall adsorption energy gain by deformation. Soft hollow capsules exhibit a pronounced increase of the adsorption energy as compared to filled soft particles and, thus, are attractive candidates as foam and emulsion stabilizers. SN - 1744-6848 UR - https://www.unboundmedicine.com/medline/citation/29946629/Elastic_capsules_at_liquid_liquid_interfaces_ L2 - https://doi.org/10.1039/c8sm00316e DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.