Tags

Type your tag names separated by a space and hit enter

Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials.
Carbohydr Polym. 2018 Nov 01; 199:415-425.CP

Abstract

In this study, a novel carboxymethyl cellulose (CMC)-based ternary nanocomposite films containing sodium montmorillonite (Na-MMT) (1, 3 and 5% wt) and titanium dioxide (TiO2) (1, 3 and 5% wt) nanoparticles (NPs) were made via casting method. The results showed that addition of NPs decremented water vapor permeability of the films up to 39% and 50% by adding Na-MMT, and Na-MMT + TiO2, respectively, while moisture content, density and glass transition temperature incremented slightly. The nanoclays amplified resistance of the nanocomposites against tensile stress and Young's modulus (YM) of the films at the expense of elongation at break. A synergistic effect of NPs on moisture uptake reduction (≈ 40%) of films was observed. Nano-TiO2 was strongly effective in UV-light blocking (The films containing 5% TiO2 removed more than 99% of UV and more than 98% of visible lights). The interactions, crystallinity and morphology of the nanocomposites were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). Development of hydrogen bonds between the hydroxyl groups of CMC and nanoparticles was indicated by FT-IR spectroscopy. Conforming to the XRD analysis, clay nanolayers organized an intercalated structure in the nanocomposites, whereas a limited agglomeration of TiO2 nanoparticles led to increment of films crystallinity. SEM micrographs showed well-dispersed Na-MMT and TiO2 NPs through the films surface especially at low concentrations. In conclusion, although the films loaded with nanoclays exhibited better properties than the control film, inclusion of TiO2 more improved the functional characteristics of them and extended the potential as a biodegradable packaging.

Authors+Show Affiliations

Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box: 56199-11367, Iran. Electronic address: b_fathi@uma.ac.ir.Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box: 56199-11367, Iran.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30143147

Citation

Fathi Achachlouei, Bahram, and Younes Zahedi. "Fabrication and Characterization of CMC-based Nanocomposites Reinforced With Sodium Montmorillonite and TiO2 Nanomaterials." Carbohydrate Polymers, vol. 199, 2018, pp. 415-425.
Fathi Achachlouei B, Zahedi Y. Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym. 2018;199:415-425.
Fathi Achachlouei, B., & Zahedi, Y. (2018). Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydrate Polymers, 199, 415-425. https://doi.org/10.1016/j.carbpol.2018.07.031
Fathi Achachlouei B, Zahedi Y. Fabrication and Characterization of CMC-based Nanocomposites Reinforced With Sodium Montmorillonite and TiO2 Nanomaterials. Carbohydr Polym. 2018 Nov 1;199:415-425. PubMed PMID: 30143147.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. AU - Fathi Achachlouei,Bahram, AU - Zahedi,Younes, Y1 - 2018/07/10/ PY - 2018/02/03/received PY - 2018/07/08/revised PY - 2018/07/09/accepted PY - 2018/8/26/entrez PY - 2018/8/26/pubmed PY - 2018/8/26/medline KW - Carboxymethyl cellulose KW - Nanocomposite KW - Packaging KW - Sodium montmorillonite KW - Titanium dioxide SP - 415 EP - 425 JF - Carbohydrate polymers JO - Carbohydr Polym VL - 199 N2 - In this study, a novel carboxymethyl cellulose (CMC)-based ternary nanocomposite films containing sodium montmorillonite (Na-MMT) (1, 3 and 5% wt) and titanium dioxide (TiO2) (1, 3 and 5% wt) nanoparticles (NPs) were made via casting method. The results showed that addition of NPs decremented water vapor permeability of the films up to 39% and 50% by adding Na-MMT, and Na-MMT + TiO2, respectively, while moisture content, density and glass transition temperature incremented slightly. The nanoclays amplified resistance of the nanocomposites against tensile stress and Young's modulus (YM) of the films at the expense of elongation at break. A synergistic effect of NPs on moisture uptake reduction (≈ 40%) of films was observed. Nano-TiO2 was strongly effective in UV-light blocking (The films containing 5% TiO2 removed more than 99% of UV and more than 98% of visible lights). The interactions, crystallinity and morphology of the nanocomposites were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). Development of hydrogen bonds between the hydroxyl groups of CMC and nanoparticles was indicated by FT-IR spectroscopy. Conforming to the XRD analysis, clay nanolayers organized an intercalated structure in the nanocomposites, whereas a limited agglomeration of TiO2 nanoparticles led to increment of films crystallinity. SEM micrographs showed well-dispersed Na-MMT and TiO2 NPs through the films surface especially at low concentrations. In conclusion, although the films loaded with nanoclays exhibited better properties than the control film, inclusion of TiO2 more improved the functional characteristics of them and extended the potential as a biodegradable packaging. SN - 1879-1344 UR - https://www.unboundmedicine.com/medline/citation/30143147/Fabrication_and_characterization_of_CMC_based_nanocomposites_reinforced_with_sodium_montmorillonite_and_TiO2_nanomaterials_ DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.