Tags

Type your tag names separated by a space and hit enter

Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2018 Dec 01; 93:356-366.MS

Abstract

The main role of tissue engineering is to produce the artificial tissue for replacing the biological functions in tissue regeneration and wounds healing. The purpose of this research was to produce porous nanofiber scaffold by electrospinning to compensate deep skin damages. In order to simulate a scaffold similar to the natural extracellular matrix of the skin, a mixture of corn protein (Zein), polycaprolactone (PCL) and gum arabic (GA) was used with different concentrations and ratios. Zein and GA polymers were used as a protein and polysaccharide component of the scaffold and PCL polymer for elasticity, strength and time setting of scaffold degradability. For investigating morphology and scaffold compounds, scanning electron microscopy (SEM) and Fourier transform infrared techniques were used. Furthermore, mechanical properties, porosity, water absorption and degradability in phosphate buffered saline (PBS) were investigated. Antibacterial properties, cell adhesion and proliferation were also evaluated. SEM results showed that fabricated PCL/Zein/GA scaffolds had a porous structure with bimodal diameters distribution. PCL/Zein/GA scaffolds showed high hydrophilic properties, favorable porosity (about 80%) and tensile strength of 1.36-3 MPa with an elongation of 19.13-44.06% desirable for skin tissue engineering. SEM images of degraded specimens show that the scaffold retains its fibrous structure during its destruction. The results of bacterial culture indicated that the scaffold containing GA had antibacterial properties. Moreover, in vitro assays revealed favorable L929 cells proliferation compared to tissue culture polystyrene (control). Hence, the PCL/Zein/GA scaffold shows a good potential for application in skin tissue engineering.

Authors+Show Affiliations

Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran. Electronic address: j.mokhtari@guilan.ac.ir.Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30274067

Citation

Pedram Rad, Zahra, et al. "Fabrication and Characterization of PCL/zein/gum Arabic Electrospun Nanocomposite Scaffold for Skin Tissue Engineering." Materials Science & Engineering. C, Materials for Biological Applications, vol. 93, 2018, pp. 356-366.
Pedram Rad Z, Mokhtari J, Abbasi M. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;93:356-366.
Pedram Rad, Z., Mokhtari, J., & Abbasi, M. (2018). Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 93, 356-366. https://doi.org/10.1016/j.msec.2018.08.010
Pedram Rad Z, Mokhtari J, Abbasi M. Fabrication and Characterization of PCL/zein/gum Arabic Electrospun Nanocomposite Scaffold for Skin Tissue Engineering. Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:356-366. PubMed PMID: 30274067.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. AU - Pedram Rad,Zahra, AU - Mokhtari,Javad, AU - Abbasi,Marjan, Y1 - 2018/08/07/ PY - 2018/01/08/received PY - 2018/07/20/revised PY - 2018/08/05/accepted PY - 2018/10/3/entrez PY - 2018/10/3/pubmed PY - 2018/12/13/medline KW - Cell culture KW - Electrospun nanofibers KW - Gum arabic KW - Polycaprolactone KW - Tissue engineering KW - Zein SP - 356 EP - 366 JF - Materials science & engineering. C, Materials for biological applications JO - Mater Sci Eng C Mater Biol Appl VL - 93 N2 - The main role of tissue engineering is to produce the artificial tissue for replacing the biological functions in tissue regeneration and wounds healing. The purpose of this research was to produce porous nanofiber scaffold by electrospinning to compensate deep skin damages. In order to simulate a scaffold similar to the natural extracellular matrix of the skin, a mixture of corn protein (Zein), polycaprolactone (PCL) and gum arabic (GA) was used with different concentrations and ratios. Zein and GA polymers were used as a protein and polysaccharide component of the scaffold and PCL polymer for elasticity, strength and time setting of scaffold degradability. For investigating morphology and scaffold compounds, scanning electron microscopy (SEM) and Fourier transform infrared techniques were used. Furthermore, mechanical properties, porosity, water absorption and degradability in phosphate buffered saline (PBS) were investigated. Antibacterial properties, cell adhesion and proliferation were also evaluated. SEM results showed that fabricated PCL/Zein/GA scaffolds had a porous structure with bimodal diameters distribution. PCL/Zein/GA scaffolds showed high hydrophilic properties, favorable porosity (about 80%) and tensile strength of 1.36-3 MPa with an elongation of 19.13-44.06% desirable for skin tissue engineering. SEM images of degraded specimens show that the scaffold retains its fibrous structure during its destruction. The results of bacterial culture indicated that the scaffold containing GA had antibacterial properties. Moreover, in vitro assays revealed favorable L929 cells proliferation compared to tissue culture polystyrene (control). Hence, the PCL/Zein/GA scaffold shows a good potential for application in skin tissue engineering. SN - 1873-0191 UR - https://www.unboundmedicine.com/medline/citation/30274067/Fabrication_and_characterization_of_PCL/zein/gum_arabic_electrospun_nanocomposite_scaffold_for_skin_tissue_engineering_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0928-4931(18)30084-5 DB - PRIME DP - Unbound Medicine ER -