Tags

Type your tag names separated by a space and hit enter

The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida.
Environ Pollut. 2019 Jan; 244:342-350.EP

Abstract

Pesticides risk assessments have traditionally focused on the effects on standard parameters, such as mortality, reproduction and development. However, one of the first signs of adverse effects that occur in organisms exposed to stress conditions is an alteration in their genomic expression, which is specific to the type of stress, sensitive to very low contaminant concentrations and responsive in a few hours. The aim of the present study was to evaluate the single and binary mixture toxicity of commercial products of abamectin (Kraft® 36 EC) and difenoconazole (Score® 250 EC) to Folsomia candida. Laboratory toxicity tests were conducted to access the effects of these pesticides on springtail survival, reproduction and gene expression. The reproduction assays gave EC50 and EC10 values, respectively, of 6.3 and 1.4 mg a.s./kg dry soil for abamectin; 1.0 and 0.12 mg a.s./kg dry soil for Kraft® 36 EC; and 54 and 23 mg a.s./kg dry soil for Score® 250 EC. Technical difenoconazole did not have any effect at the concentrations tested. No significant differences in gene expression were found between the abamectin concentrations tested (EC10 and EC50) and the solvent control. Exposure to Kraft® 36 EC, however, significantly induced Cyp6 expression at the EC50 level, while VgR was significantly downregulated at both the EC10 and EC50. Exposure to the simple pesticide mixture of Kraft® 36 EC + Score® 250 EC caused significant up regulation of ABC transporter, and significant down regulation of VgR relative to the controls. GABA receptor also showed significant down-regulation between the EC10 and EC50 mixture treatments. Results of the present study demonstrate that pesticide-induced gene expression effects precede and occur at lower concentrations than organism-level responses. Integrating "omic" endpoints in traditional bioassays may thus be a promising way forward in pesticide toxicity evaluations.

Authors+Show Affiliations

NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands. Electronic address: livia.pitombeira@gmail.com.CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal.Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30352348

Citation

Pitombeira de Figueirêdo, Livia, et al. "The Use of Gene Expression to Unravel the Single and Mixture Toxicity of Abamectin and Difenoconazole On Survival and Reproduction of the Springtail Folsomia Candida." Environmental Pollution (Barking, Essex : 1987), vol. 244, 2019, pp. 342-350.
Pitombeira de Figueirêdo L, Daam MA, Mainardi G, et al. The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. Environ Pollut. 2019;244:342-350.
Pitombeira de Figueirêdo, L., Daam, M. A., Mainardi, G., Mariën, J., Espíndola, E. L. G., van Gestel, C. A. M., & Roelofs, D. (2019). The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. Environmental Pollution (Barking, Essex : 1987), 244, 342-350. https://doi.org/10.1016/j.envpol.2018.10.077
Pitombeira de Figueirêdo L, et al. The Use of Gene Expression to Unravel the Single and Mixture Toxicity of Abamectin and Difenoconazole On Survival and Reproduction of the Springtail Folsomia Candida. Environ Pollut. 2019;244:342-350. PubMed PMID: 30352348.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. AU - Pitombeira de Figueirêdo,Livia, AU - Daam,Michiel A, AU - Mainardi,Giulia, AU - Mariën,Janine, AU - Espíndola,Evaldo L G, AU - van Gestel,Cornelis A M, AU - Roelofs,Dick, Y1 - 2018/10/16/ PY - 2018/08/03/received PY - 2018/10/09/revised PY - 2018/10/16/accepted PY - 2018/10/24/pubmed PY - 2019/1/29/medline PY - 2018/10/24/entrez KW - ABC transporter KW - Cyp6 KW - GABA receptor KW - Pesticides KW - Vitellogenin receptor SP - 342 EP - 350 JF - Environmental pollution (Barking, Essex : 1987) JO - Environ. Pollut. VL - 244 N2 - Pesticides risk assessments have traditionally focused on the effects on standard parameters, such as mortality, reproduction and development. However, one of the first signs of adverse effects that occur in organisms exposed to stress conditions is an alteration in their genomic expression, which is specific to the type of stress, sensitive to very low contaminant concentrations and responsive in a few hours. The aim of the present study was to evaluate the single and binary mixture toxicity of commercial products of abamectin (Kraft® 36 EC) and difenoconazole (Score® 250 EC) to Folsomia candida. Laboratory toxicity tests were conducted to access the effects of these pesticides on springtail survival, reproduction and gene expression. The reproduction assays gave EC50 and EC10 values, respectively, of 6.3 and 1.4 mg a.s./kg dry soil for abamectin; 1.0 and 0.12 mg a.s./kg dry soil for Kraft® 36 EC; and 54 and 23 mg a.s./kg dry soil for Score® 250 EC. Technical difenoconazole did not have any effect at the concentrations tested. No significant differences in gene expression were found between the abamectin concentrations tested (EC10 and EC50) and the solvent control. Exposure to Kraft® 36 EC, however, significantly induced Cyp6 expression at the EC50 level, while VgR was significantly downregulated at both the EC10 and EC50. Exposure to the simple pesticide mixture of Kraft® 36 EC + Score® 250 EC caused significant up regulation of ABC transporter, and significant down regulation of VgR relative to the controls. GABA receptor also showed significant down-regulation between the EC10 and EC50 mixture treatments. Results of the present study demonstrate that pesticide-induced gene expression effects precede and occur at lower concentrations than organism-level responses. Integrating "omic" endpoints in traditional bioassays may thus be a promising way forward in pesticide toxicity evaluations. SN - 1873-6424 UR - https://www.unboundmedicine.com/medline/citation/30352348/The_use_of_gene_expression_to_unravel_the_single_and_mixture_toxicity_of_abamectin_and_difenoconazole_on_survival_and_reproduction_of_the_springtail_Folsomia_candida_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0269-7491(18)33588-7 DB - PRIME DP - Unbound Medicine ER -