Tags

Type your tag names separated by a space and hit enter

Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films via Bi Nonstoichiometry.
ACS Appl Mater Interfaces 2018; 10(50):43792-43801AA

Abstract

Exploring and manipulating domain configurations in ferroelectric thin films are of critical importance for the design and fabrication of ferroelectric heterostructures with a novel functional performance. In this study, BiFeO3 (BFO) ultrathin films with various Bi/Fe ratios from excess Bi to deficient Bi have been grown on (La0.7Sr0.3)MnO3 (LSMO)-covered SrTiO3 substrates by a laser molecular beam epitaxy system. Atomic force microscopy and piezoresponse force microscopy measurements show that both the surface morphology and ferroelectric polarization of the films are relevant to Bi nonstoichiometry. More significantly, a Bi-excess thin film shows an upward (from substrate to film surface) uniform ferroelectric polarization, whereas a Bi-deficient thin film exhibits a downward uniform polarization, which means the as-grown polarization of BFO thin films can be controlled by changing the Bi contents. Atomic-scale structural and chemical characterizations and second-harmonic generation measurements reveal that two different kinds of structural distortions and interface atomic configurations in the BFO/LSMO heterostructures can be induced by the change of Bi nonstoichiometry, leading to the two opposite as-grown ferroelectric polarizations. It has also been revealed that the band gap of BFO thin films can be modulated via Bi nonstoichiometry. These results demonstrate that Bi nonstoichiometry plays a key role on the ferroelectric domain states and physical properties of BFO thin films and also open a new avenue to manipulate the structure and ferroelectric domain states in BFO thin films.

Authors+Show Affiliations

Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China. Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China.Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China. University of Chinese Academy of Sciences , Beijing 100049 , China. Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30474948

Citation

Tian, Shilu, et al. "Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films Via Bi Nonstoichiometry." ACS Applied Materials & Interfaces, vol. 10, no. 50, 2018, pp. 43792-43801.
Tian S, Wang C, Zhou Y, et al. Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films via Bi Nonstoichiometry. ACS Appl Mater Interfaces. 2018;10(50):43792-43801.
Tian, S., Wang, C., Zhou, Y., Li, X., Gao, P., Wang, J., ... Jin, K. (2018). Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films via Bi Nonstoichiometry. ACS Applied Materials & Interfaces, 10(50), pp. 43792-43801. doi:10.1021/acsami.8b15703.
Tian S, et al. Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films Via Bi Nonstoichiometry. ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43792-43801. PubMed PMID: 30474948.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO3 Ultrathin Films via Bi Nonstoichiometry. AU - Tian,Shilu, AU - Wang,Can, AU - Zhou,Yong, AU - Li,Xiaomei, AU - Gao,Peng, AU - Wang,Jiesu, AU - Feng,Yu, AU - Yao,Xiaokang, AU - Ge,Chen, AU - He,Meng, AU - Bai,Xuedong, AU - Yang,Guozhen, AU - Jin,Kuijuan, Y1 - 2018/12/07/ PY - 2018/11/27/pubmed PY - 2018/11/27/medline PY - 2018/11/27/entrez KW - Bi nonstoichiometry KW - BiFeO3 ultrathin films KW - ferroelectric domain states KW - interface atomic configuration KW - structural distortion SP - 43792 EP - 43801 JF - ACS applied materials & interfaces JO - ACS Appl Mater Interfaces VL - 10 IS - 50 N2 - Exploring and manipulating domain configurations in ferroelectric thin films are of critical importance for the design and fabrication of ferroelectric heterostructures with a novel functional performance. In this study, BiFeO3 (BFO) ultrathin films with various Bi/Fe ratios from excess Bi to deficient Bi have been grown on (La0.7Sr0.3)MnO3 (LSMO)-covered SrTiO3 substrates by a laser molecular beam epitaxy system. Atomic force microscopy and piezoresponse force microscopy measurements show that both the surface morphology and ferroelectric polarization of the films are relevant to Bi nonstoichiometry. More significantly, a Bi-excess thin film shows an upward (from substrate to film surface) uniform ferroelectric polarization, whereas a Bi-deficient thin film exhibits a downward uniform polarization, which means the as-grown polarization of BFO thin films can be controlled by changing the Bi contents. Atomic-scale structural and chemical characterizations and second-harmonic generation measurements reveal that two different kinds of structural distortions and interface atomic configurations in the BFO/LSMO heterostructures can be induced by the change of Bi nonstoichiometry, leading to the two opposite as-grown ferroelectric polarizations. It has also been revealed that the band gap of BFO thin films can be modulated via Bi nonstoichiometry. These results demonstrate that Bi nonstoichiometry plays a key role on the ferroelectric domain states and physical properties of BFO thin films and also open a new avenue to manipulate the structure and ferroelectric domain states in BFO thin films. SN - 1944-8252 UR - https://www.unboundmedicine.com/medline/citation/30474948/Manipulating_the_Ferroelectric_Domain_States_and_Structural_Distortion_in_Epitaxial_BiFeO3_Ultrathin_Films_via_Bi_Nonstoichiometry_ L2 - https://dx.doi.org/10.1021/acsami.8b15703 DB - PRIME DP - Unbound Medicine ER -