Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns-A laboratory study.Clin Oral Implants Res. 2019 Jan; 30(1):90-98.CO
OBJECTIVE
The purpose of this laboratory study was to evaluate the fatigue resistance, fracture resistance and mode of failure of posterior hybrid-abutment-crown vs. hybrid-abutment with separate crown, both bonded to short titanium bases.
MATERIALS AND METHODS
Thirty-two titanium implants were embedded perpendicularly in auto-polymerizing resin. Implant-supported restorations simulating a maxillary first premolar were designed and milled using a CAD/CAM system and divided into 2 groups according to material (n = 16): zirconia (Z) and lithium disilicate (L). Each group was subdivided into two subgroups according to design (n = 8): hybrid-abutment-crown (ZS, LS) and hybrid-abutment with separate crown (ZC, LC). Each group was subjected to 1.2 million cycles of thermo-mechanical fatigue loading in a dual-axis chewing simulator at 120 N load. Surviving specimens were subjected to quasi-static loading in a universal testing machine. Mode of failure was determined under a low magnification optical microscope.
RESULTS
During chewing simulation, 18.8% of zirconia and 43.8% of lithium disilicate restorations failed. The fracture resistance median values ranged from 3,730 N for group ZC, 3,400 N for group ZS, 1,295 N for group LS to 849 N for group LC. Group ZC had a statistically significant higher fracture resistance than groups LC and LS; however, it did not differ significantly from group ZS (p ≤ 0.05). Failures were seen in both titanium bases and ceramic superstructure.
CONCLUSIONS
Zirconia and lithium disilicate hybrid implant-supported restorations with short (3 mm) titanium bases failed in a considerable number already during chewing simulation. Therefore, despite their high fracture strength the use in the posterior region should be considered critically.