Tags

Type your tag names separated by a space and hit enter

Characteristics and source apportionment of PM2.5 in Jiaxing, China.
Environ Sci Pollut Res Int. 2019 Mar; 26(8):7497-7511.ES

Abstract

Herein we investigated the morphology, chemical characteristics, and source apportionment of fine particulate matter (PM2.5) samples collected from five sites in Jiaxing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that soot aggregates and coal-fired fly ash were generally the most abundant components in the samples. All the samples were analyzed gravimetrically for mass concentrations and their various compositions were determined. Our results revealed that the PM2.5 concentrations in the samples were in the following order: winter > spring > autumn > summer. The PM2.5 concentrations in winter and spring were higher than those in autumn and summer, except for inorganic elements. Carbonaceous species and water-soluble inorganic ions were the most abundant components in the samples, accounting for 26.17-50.44% and 34.27-49.6%, respectively. The high secondary organic carbon/organic carbon ratio indicated that secondary organic pollution in Jiaxing was severe. The average ratios of NO3-/SO42-, ranging from 1.01 to 1.25 at the five sites, indicated that mobile pollution sources contributed more to the formation of PM2.5 than stationary sources. The BeP/(BeP + BaP) ratio (0.52-0.71) in samples reflected the influence of transportation from outside of Jiaxing. The positive matrix factorization (PMF) model identified eight main pollution sources: secondary nitrates (26.95%), secondary sulfates (15.49%), secondary organic aerosol (SOA) (19.64%), vehicle exhaust (15.67%), coal combustion (8.6%), fugitive dust (7.7%), ships and heavy oil (5.23%), biomass burning, and other sources (0.91%). Therefore, PM2.5 pollution in Jiaxing during the winter and spring seasons was more severe than that in the summer and autumn. Secondary aerosols were the most important source of PM2.5 pollution; therefore, focus should be placed on controlling gaseous precursors.

Authors+Show Affiliations

Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.Jiaxing Environmental Monitoring Station, Jiaxing, 314000, China.Shanghai Environmental Monitoring Center, Shanghai, 200235, China.Shanghai Environmental Monitoring Center, Shanghai, 200235, China.Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China. cyjin@sjtu.edu.cn.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30659487

Citation

Zhao, Zhipeng, et al. "Characteristics and Source Apportionment of PM2.5 in Jiaxing, China." Environmental Science and Pollution Research International, vol. 26, no. 8, 2019, pp. 7497-7511.
Zhao Z, Lv S, Zhang Y, et al. Characteristics and source apportionment of PM2.5 in Jiaxing, China. Environ Sci Pollut Res Int. 2019;26(8):7497-7511.
Zhao, Z., Lv, S., Zhang, Y., Zhao, Q., Shen, L., Xu, S., Yu, J., Hou, J., & Jin, C. (2019). Characteristics and source apportionment of PM2.5 in Jiaxing, China. Environmental Science and Pollution Research International, 26(8), 7497-7511. https://doi.org/10.1007/s11356-019-04205-2
Zhao Z, et al. Characteristics and Source Apportionment of PM2.5 in Jiaxing, China. Environ Sci Pollut Res Int. 2019;26(8):7497-7511. PubMed PMID: 30659487.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Characteristics and source apportionment of PM2.5 in Jiaxing, China. AU - Zhao,Zhipeng, AU - Lv,Sheng, AU - Zhang,Yihua, AU - Zhao,Qianbiao, AU - Shen,Lin, AU - Xu,Shi, AU - Yu,Jianqiang, AU - Hou,Jingwen, AU - Jin,Chengyu, Y1 - 2019/01/18/ PY - 2018/09/24/received PY - 2019/01/08/accepted PY - 2019/1/20/pubmed PY - 2019/5/6/medline PY - 2019/1/20/entrez KW - Chemical characteristics KW - Morphology KW - PM2.5 KW - Source apportionment SP - 7497 EP - 7511 JF - Environmental science and pollution research international JO - Environ Sci Pollut Res Int VL - 26 IS - 8 N2 - Herein we investigated the morphology, chemical characteristics, and source apportionment of fine particulate matter (PM2.5) samples collected from five sites in Jiaxing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that soot aggregates and coal-fired fly ash were generally the most abundant components in the samples. All the samples were analyzed gravimetrically for mass concentrations and their various compositions were determined. Our results revealed that the PM2.5 concentrations in the samples were in the following order: winter > spring > autumn > summer. The PM2.5 concentrations in winter and spring were higher than those in autumn and summer, except for inorganic elements. Carbonaceous species and water-soluble inorganic ions were the most abundant components in the samples, accounting for 26.17-50.44% and 34.27-49.6%, respectively. The high secondary organic carbon/organic carbon ratio indicated that secondary organic pollution in Jiaxing was severe. The average ratios of NO3-/SO42-, ranging from 1.01 to 1.25 at the five sites, indicated that mobile pollution sources contributed more to the formation of PM2.5 than stationary sources. The BeP/(BeP + BaP) ratio (0.52-0.71) in samples reflected the influence of transportation from outside of Jiaxing. The positive matrix factorization (PMF) model identified eight main pollution sources: secondary nitrates (26.95%), secondary sulfates (15.49%), secondary organic aerosol (SOA) (19.64%), vehicle exhaust (15.67%), coal combustion (8.6%), fugitive dust (7.7%), ships and heavy oil (5.23%), biomass burning, and other sources (0.91%). Therefore, PM2.5 pollution in Jiaxing during the winter and spring seasons was more severe than that in the summer and autumn. Secondary aerosols were the most important source of PM2.5 pollution; therefore, focus should be placed on controlling gaseous precursors. SN - 1614-7499 UR - https://www.unboundmedicine.com/medline/citation/30659487/Characteristics_and_source_apportionment_of_PM2_5_in_Jiaxing_China_ L2 - https://dx.doi.org/10.1007/s11356-019-04205-2 DB - PRIME DP - Unbound Medicine ER -