Tags

Type your tag names separated by a space and hit enter

Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging.
Int J Oral Maxillofac Implants. 2019 May/June; 34(3):622–630.IJ

Abstract

PURPOSE

The purpose of this study was to compare the fracture resistances and the fracture types of titanium, zirconia, and ceramic-reinforced polyetheretherketone (PEEK) implant abutments supporting CAD/CAM monolithic lithium disilicate ceramic crowns after in vitro dynamic loading and thermocycling aging.

MATERIALS AND METHODS

Three implant abutment (SKY Implant) groups-titanium (group Ti, control); zirconia with titanium base (group Zr); and ceramic-reinforced PEEK (BioHPP) with titanium base (group RPEEK); n = 12 each-were used. Thirty-six CAD/CAM monolithic lithium disilicate crowns (IPS e.max CAD) in the form of a maxillary central incisor were cemented with Panavia V5 on the abutments. The specimens were subjected to dynamic loading and thermocycling. Fracture resistances of the restorations were tested with a universal testing machine (0.5 mm/min), and their fracture patterns were analyzed. One-way ANOVA and Tukey post-hoc test were used for statistical analyses (α = .05).

RESULTS

All samples survived after aging. The fracture strength values (mean ± standard deviation) of the groups were as follows: group Ti, 787.8 ± 120.9 N; group Zr, 623.9 ± 97.4 N; and group RPEEK, 602.9 ± 121 N. The fracture strengths were significantly higher in group Ti compared to groups Zr and RPEEK (P = .001). No significant difference was observed between groups Zr and RPEEK. Failures generally occurred due to fracture of the screw in group Ti, abutment and crown in group Zr, and crown in group RPEEK.

CONCLUSION

Ceramic-reinforced PEEK abutments may be an alternative to zirconia abutments with a titanium base for single-implant restorations in the anterior region. However, there is need for further in vitro and clinical studies to evaluate the long-term performance of ceramic-reinforced PEEK abutments.

Authors

No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30716141

Citation

Atsü, Saadet Sağlam, et al. "Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging." The International Journal of Oral & Maxillofacial Implants, vol. 34, no. 3, 2019, pp. 622–630.
Atsü SS, Aksan ME, Bulut AC. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. Int J Oral Maxillofac Implants. 2019;34(3):622–630.
Atsü, S. S., Aksan, M. E., & Bulut, A. C. (2019). Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. The International Journal of Oral & Maxillofacial Implants, 34(3), 622–630. https://doi.org/10.11607/jomi.7036
Atsü SS, Aksan ME, Bulut AC. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. Int J Oral Maxillofac Implants. 2019 May/June;34(3):622–630. PubMed PMID: 30716141.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. AU - Atsü,Saadet Sağlam, AU - Aksan,M Emin, AU - Bulut,Ali Can, Y1 - 2019/02/04/ PY - 2019/2/5/entrez PY - 2019/2/5/pubmed PY - 2019/12/18/medline SP - 622–630 EP - 622–630 JF - The International journal of oral & maxillofacial implants JO - Int J Oral Maxillofac Implants VL - 34 IS - 3 N2 - PURPOSE: The purpose of this study was to compare the fracture resistances and the fracture types of titanium, zirconia, and ceramic-reinforced polyetheretherketone (PEEK) implant abutments supporting CAD/CAM monolithic lithium disilicate ceramic crowns after in vitro dynamic loading and thermocycling aging. MATERIALS AND METHODS: Three implant abutment (SKY Implant) groups-titanium (group Ti, control); zirconia with titanium base (group Zr); and ceramic-reinforced PEEK (BioHPP) with titanium base (group RPEEK); n = 12 each-were used. Thirty-six CAD/CAM monolithic lithium disilicate crowns (IPS e.max CAD) in the form of a maxillary central incisor were cemented with Panavia V5 on the abutments. The specimens were subjected to dynamic loading and thermocycling. Fracture resistances of the restorations were tested with a universal testing machine (0.5 mm/min), and their fracture patterns were analyzed. One-way ANOVA and Tukey post-hoc test were used for statistical analyses (α = .05). RESULTS: All samples survived after aging. The fracture strength values (mean ± standard deviation) of the groups were as follows: group Ti, 787.8 ± 120.9 N; group Zr, 623.9 ± 97.4 N; and group RPEEK, 602.9 ± 121 N. The fracture strengths were significantly higher in group Ti compared to groups Zr and RPEEK (P = .001). No significant difference was observed between groups Zr and RPEEK. Failures generally occurred due to fracture of the screw in group Ti, abutment and crown in group Zr, and crown in group RPEEK. CONCLUSION: Ceramic-reinforced PEEK abutments may be an alternative to zirconia abutments with a titanium base for single-implant restorations in the anterior region. However, there is need for further in vitro and clinical studies to evaluate the long-term performance of ceramic-reinforced PEEK abutments. SN - 1942-4434 UR - https://www.unboundmedicine.com/medline/citation/30716141/Fracture_Resistance_of_Titanium_Zirconia_and_Ceramic_Reinforced_Polyetheretherketone_Implant_Abutments_Supporting_CAD/CAM_Monolithic_Lithium_Disilicate_Ceramic_Crowns_After_Aging_ DB - PRIME DP - Unbound Medicine ER -