Tags

Type your tag names separated by a space and hit enter

Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation.

Abstract

BACKGROUND

Kidney transplantation is the optimal treatment for end-stage kidney disease. Retrieval, transport and transplant of kidney grafts causes ischaemia reperfusion injury. The current accepted standard is static cold storage (SCS) whereby the kidney is stored on ice after removal from the donor and then removed from the ice box at the time of implantation. However, technology is now available to perfuse or "pump" the kidney during the transport phase or at the recipient centre. This can be done at a variety of temperatures and using different perfusates. The effectiveness of treatment is manifest clinically as delayed graft function (DGF), whereby the kidney fails to produce urine immediately after transplant.

OBJECTIVES

To compare hypothermic machine perfusion (HMP) and (sub)normothermic machine perfusion (NMP) with standard SCS.

SEARCH METHODS

We searched the Cochrane Kidney and Transplant Register of Studies to 18 October 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov.

SELECTION CRITERIA

All randomised controlled trials (RCTs) and quasi-RCTs comparing HMP/NMP versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion.

DATA COLLECTION AND ANALYSIS

The results of the literature search were screened and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratio (RR) with 95% confidence intervals (CI). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was incidence of DGF. Secondary outcomes included: one-year graft survival, incidence of primary non-function (PNF), DGF duration, long term graft survival, economic implications, graft function, patient survival and incidence of acute rejection.

MAIN RESULTS

No studies reported on NMP, however one ongoing study was identified.Sixteen studies (2266 participants) comparing HMP with SCS were included; 15 studies could be meta-analysed. Fourteen studies reported on requirement for dialysis in the first week post-transplant (DGF incidence); there is high-certainty evidence that HMP reduces the risk of DGF when compared to SCS (RR 0.77; 95% CI 0.67 to 0.90; P = 0.0006). HMP reduces the risk of DGF in kidneys from DCD donors (7 studies, 772 participants: RR 0.75; 95% CI 0.64 to 0.87; P = 0.0002; high certainty evidence), as well as kidneys from DBD donors (4 studies, 971 participants: RR 0.78, 95% CI 0.65 to 0.93; P = 0.006; high certainty evidence). The number of perfusions required to prevent one episode of DGF (number needed to treat, NNT) was 7.26 and 13.60 in DCD and DBD kidneys respectively. Studies performed in the last decade all used the LifePort machine and confirmed that HMP reduces the incidence of DGF in the modern era (5 studies, 1355 participants: RR 0.77, 95% CI 0.66 to 0.91; P = 0.002; high certainty evidence). Reports of economic analysis suggest that HMP can lead to cost savings in both the North American and European settings.Two studies reported HMP also improves graft survival however we were not able to meta-analyse these results. A reduction in incidence of PNF could not be demonstrated. The effect of HMP on our other outcomes (incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain.

AUTHORS' CONCLUSIONS

HMP is superior to SCS in deceased donor kidney transplantation. This is true for both DBD and DCD kidneys, and remains true in the modern era (studies performed in the last decade). As kidneys from DCD donors have a higher overall DGF rate, fewer perfusions are needed to prevent one episode of DGF (7.26 versus 13.60 in DBD kidneys).Further studies looking solely at the impact of HMP on DGF incidence are not required. Follow-up reports detailing long-term graft survival from participants of the studies already included in this review would be an efficient way to generate further long-term graft survival data.Economic analysis, based on the results of this review, would help cement HMP as the standard preservation method in deceased donor kidney transplantation.RCTs investigating (sub)NMP are required.

Links

  • PMC Free PDF
  • Publisher Full Text
  • Authors+Show Affiliations

    ,

    Faculty of Medical Sciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, Tyne and Wear, UK, NE2 4HH.

    , , , ,

    Source

    MeSH

    Delayed Graft Function
    Graft Rejection
    Graft Survival
    Humans
    Incidence
    Kidney
    Kidney Transplantation
    Organ Preservation
    Perfusion
    Randomized Controlled Trials as Topic
    Refrigeration
    Time Factors
    Tissue Donors

    Pub Type(s)

    Journal Article
    Meta-Analysis
    Research Support, Non-U.S. Gov't
    Systematic Review

    Language

    eng

    PubMed ID

    30875082

    Citation

    Tingle, Samuel J., et al. "Machine Perfusion Preservation Versus Static Cold Storage for Deceased Donor Kidney Transplantation." The Cochrane Database of Systematic Reviews, vol. 3, 2019, p. CD011671.
    Tingle SJ, Figueiredo RS, Moir JA, et al. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 2019;3:CD011671.
    Tingle, S. J., Figueiredo, R. S., Moir, J. A., Goodfellow, M., Talbot, D., & Wilson, C. H. (2019). Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. The Cochrane Database of Systematic Reviews, 3, p. CD011671. doi:10.1002/14651858.CD011671.pub2.
    Tingle SJ, et al. Machine Perfusion Preservation Versus Static Cold Storage for Deceased Donor Kidney Transplantation. Cochrane Database Syst Rev. 2019 03 15;3:CD011671. PubMed PMID: 30875082.
    * Article titles in AMA citation format should be in sentence-case
    TY - JOUR T1 - Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. AU - Tingle,Samuel J, AU - Figueiredo,Rodrigo S, AU - Moir,John Ag, AU - Goodfellow,Michael, AU - Talbot,David, AU - Wilson,Colin H, Y1 - 2019/03/15/ PY - 2019/3/16/pubmed PY - 2019/4/18/medline PY - 2019/3/16/entrez SP - CD011671 EP - CD011671 JF - The Cochrane database of systematic reviews JO - Cochrane Database Syst Rev VL - 3 N2 - BACKGROUND: Kidney transplantation is the optimal treatment for end-stage kidney disease. Retrieval, transport and transplant of kidney grafts causes ischaemia reperfusion injury. The current accepted standard is static cold storage (SCS) whereby the kidney is stored on ice after removal from the donor and then removed from the ice box at the time of implantation. However, technology is now available to perfuse or "pump" the kidney during the transport phase or at the recipient centre. This can be done at a variety of temperatures and using different perfusates. The effectiveness of treatment is manifest clinically as delayed graft function (DGF), whereby the kidney fails to produce urine immediately after transplant. OBJECTIVES: To compare hypothermic machine perfusion (HMP) and (sub)normothermic machine perfusion (NMP) with standard SCS. SEARCH METHODS: We searched the Cochrane Kidney and Transplant Register of Studies to 18 October 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA: All randomised controlled trials (RCTs) and quasi-RCTs comparing HMP/NMP versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion. DATA COLLECTION AND ANALYSIS: The results of the literature search were screened and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratio (RR) with 95% confidence intervals (CI). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was incidence of DGF. Secondary outcomes included: one-year graft survival, incidence of primary non-function (PNF), DGF duration, long term graft survival, economic implications, graft function, patient survival and incidence of acute rejection. MAIN RESULTS: No studies reported on NMP, however one ongoing study was identified.Sixteen studies (2266 participants) comparing HMP with SCS were included; 15 studies could be meta-analysed. Fourteen studies reported on requirement for dialysis in the first week post-transplant (DGF incidence); there is high-certainty evidence that HMP reduces the risk of DGF when compared to SCS (RR 0.77; 95% CI 0.67 to 0.90; P = 0.0006). HMP reduces the risk of DGF in kidneys from DCD donors (7 studies, 772 participants: RR 0.75; 95% CI 0.64 to 0.87; P = 0.0002; high certainty evidence), as well as kidneys from DBD donors (4 studies, 971 participants: RR 0.78, 95% CI 0.65 to 0.93; P = 0.006; high certainty evidence). The number of perfusions required to prevent one episode of DGF (number needed to treat, NNT) was 7.26 and 13.60 in DCD and DBD kidneys respectively. Studies performed in the last decade all used the LifePort machine and confirmed that HMP reduces the incidence of DGF in the modern era (5 studies, 1355 participants: RR 0.77, 95% CI 0.66 to 0.91; P = 0.002; high certainty evidence). Reports of economic analysis suggest that HMP can lead to cost savings in both the North American and European settings.Two studies reported HMP also improves graft survival however we were not able to meta-analyse these results. A reduction in incidence of PNF could not be demonstrated. The effect of HMP on our other outcomes (incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. AUTHORS' CONCLUSIONS: HMP is superior to SCS in deceased donor kidney transplantation. This is true for both DBD and DCD kidneys, and remains true in the modern era (studies performed in the last decade). As kidneys from DCD donors have a higher overall DGF rate, fewer perfusions are needed to prevent one episode of DGF (7.26 versus 13.60 in DBD kidneys).Further studies looking solely at the impact of HMP on DGF incidence are not required. Follow-up reports detailing long-term graft survival from participants of the studies already included in this review would be an efficient way to generate further long-term graft survival data.Economic analysis, based on the results of this review, would help cement HMP as the standard preservation method in deceased donor kidney transplantation.RCTs investigating (sub)NMP are required. SN - 1469-493X UR - https://www.unboundmedicine.com/medline/citation/30875082/Machine_perfusion_preservation_versus_static_cold_storage_for_deceased_donor_kidney_transplantation_ L2 - https://doi.org/10.1002/14651858.CD011671.pub2 DB - PRIME DP - Unbound Medicine ER -