Tags

Type your tag names separated by a space and hit enter

Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds.
J Biosci Bioeng. 2019 Sep; 128(3):337-343.JB

Abstract

Enzymatic cycling system (coupled dehydrogenase-catalyzed biosystem being composed of two elementary enzymatic reactions mediated by NAD(P)H + NAD(P)+) is industrially attractive for reducing prochiral carbonyl compounds to the corresponding chiral hydroxyl compounds. The reaction rate equation of the batch-wise biosystem was generally derived by ordered Bi Bi mechanism of two-substrate enzyme reaction on several reasonable assumptions. The rate equations of the batch-wise biosystem was generalized by transforming them into the dimensionless forms. The dimensionless forms were solved numerically. It was revealed that the batch-wise biosystem was generally made up of unique 3 phases, i.e., phases I, II and III. Phase I was very short transient so that the biosystem entered rapidly phase II. In phase II the consumption rate dynamically balanced with its formation rate so that the concentration of NAD(P)H was invariable with time (and hence NAD(P)+ concentration was, too). Phase III was substrate-exhausting phase, and the coenzyme concentration became finally only [NAD(P)+] or only [NAD(P)H] depending on the initial molar ratio of the prochiral carbonyl compound to the substrate of the coenzyme regeneration reaction ([Formula: see text]) > or <1.0. In phases I and II the numerically calculated values of state variables were very close to the analytical but approximate ones. Preferable initial conditions of the batch-wise enzymatic cycling system, i.e., the initial coenzyme species = NAD(P)+ and [Formula: see text] , were proposed. As the main assumption irreversibility of the two elemental enzymatic reactions was discussed. Validity of the proposed rate equations was mentioned.

Authors+Show Affiliations

Graduate School of Biological and Agricultural Sciences, Nagoya University, Furo-cho, Chikusa Ward, Nagoya 464-8601, Japan. Electronic address: yamane.tsuneo@f.mbox.nagoya-u.ac.jp.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

30956102

Citation

Yamane, Tsuneo. "Full-time Dynamics of Batch-wise Enzymatic Cycling System Composed of Two Kinds of Dehydrogenase Mediated By NAD(P)H for Mass Production of Chiral Hydroxyl Compounds." Journal of Bioscience and Bioengineering, vol. 128, no. 3, 2019, pp. 337-343.
Yamane T. Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds. J Biosci Bioeng. 2019;128(3):337-343.
Yamane, T. (2019). Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds. Journal of Bioscience and Bioengineering, 128(3), 337-343. https://doi.org/10.1016/j.jbiosc.2019.03.004
Yamane T. Full-time Dynamics of Batch-wise Enzymatic Cycling System Composed of Two Kinds of Dehydrogenase Mediated By NAD(P)H for Mass Production of Chiral Hydroxyl Compounds. J Biosci Bioeng. 2019;128(3):337-343. PubMed PMID: 30956102.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds. A1 - Yamane,Tsuneo, Y1 - 2019/04/05/ PY - 2019/01/28/received PY - 2019/03/07/revised PY - 2019/03/08/accepted PY - 2019/4/9/pubmed PY - 2019/10/31/medline PY - 2019/4/9/entrez KW - Coenzyme regeneration KW - Dynamics of coupled two-enzyme reaction KW - Enzymatic coupled reaction KW - Enzymatic cycling system KW - Oxidoreductase-catalyzed reaction SP - 337 EP - 343 JF - Journal of bioscience and bioengineering JO - J. Biosci. Bioeng. VL - 128 IS - 3 N2 - Enzymatic cycling system (coupled dehydrogenase-catalyzed biosystem being composed of two elementary enzymatic reactions mediated by NAD(P)H + NAD(P)+) is industrially attractive for reducing prochiral carbonyl compounds to the corresponding chiral hydroxyl compounds. The reaction rate equation of the batch-wise biosystem was generally derived by ordered Bi Bi mechanism of two-substrate enzyme reaction on several reasonable assumptions. The rate equations of the batch-wise biosystem was generalized by transforming them into the dimensionless forms. The dimensionless forms were solved numerically. It was revealed that the batch-wise biosystem was generally made up of unique 3 phases, i.e., phases I, II and III. Phase I was very short transient so that the biosystem entered rapidly phase II. In phase II the consumption rate dynamically balanced with its formation rate so that the concentration of NAD(P)H was invariable with time (and hence NAD(P)+ concentration was, too). Phase III was substrate-exhausting phase, and the coenzyme concentration became finally only [NAD(P)+] or only [NAD(P)H] depending on the initial molar ratio of the prochiral carbonyl compound to the substrate of the coenzyme regeneration reaction ([Formula: see text]) > or <1.0. In phases I and II the numerically calculated values of state variables were very close to the analytical but approximate ones. Preferable initial conditions of the batch-wise enzymatic cycling system, i.e., the initial coenzyme species = NAD(P)+ and [Formula: see text] , were proposed. As the main assumption irreversibility of the two elemental enzymatic reactions was discussed. Validity of the proposed rate equations was mentioned. SN - 1347-4421 UR - https://www.unboundmedicine.com/medline/citation/30956102/Full_time_dynamics_of_batch_wise_enzymatic_cycling_system_composed_of_two_kinds_of_dehydrogenase_mediated_by_NAD_P_H_for_mass_production_of_chiral_hydroxyl_compounds_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S1389-1723(19)30091-X DB - PRIME DP - Unbound Medicine ER -