Tags

Type your tag names separated by a space and hit enter

Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair.
Front Chem. 2019; 7:184.FC

Abstract

Recently, synthetic opioid-related overdose fatalities, led by illicitly manufactured fentanyl and analogs, increased at an alarming rate, posing a global public health threat. New synthetic fentanyl analogs have been constantly emerging onto the drug marked for the last few years, to circumvent the laws and avoid analytical detection. Analytical methods need to be regularly updated to keep up with the new trends. In this study, we aimed to develop a new method for detecting the newest fentanyl analogs with a high sensitivity, in whole blood, urine, and hair. The method is intended to provide to clinical and forensic toxicologists a tool for documenting consumption. We developed a comprehensive ultra-high-performance liquid chromatography-tandem mass spectrometry method for quantifying fentanyl and 22 analogs and metabolites. Urine samples were simply diluted before injection; a liquid-liquid extraction was performed for blood testing; and a solid phase extraction was performed in hair. The chromatographic separation was short (8 min). The method was validated with a high sensitivity; limits of quantifications ranged from 2 to 6 ng/L in blood and urine, and from 11 to 21 pg/g in hair. The suitability of the method was tested with 42 postmortem blood, urine, or hair specimens from 27 fatalities in which fentanyl analogs were involved. Average blood concentrations (±SD) were 7.84 ± 7.21 and 30.0 ± 18.0 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 8), 4.08 ± 2.30 μg/L for methoxyacetylfentanyl, (n = 4), 40.2 ± 38.6 and 44.5 ± 21.1 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 3), 33.7 and 7.17 μg/L for fentanyl and norfentanyl, respectively (n = 1), 3.60 and 0.90 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), 0.67 μg/L for sufentanil (n = 1), and 3.13 ± 2.37 μg/L for 4-ANPP (n = 9). Average urine concentrations were 47.7 ± 39.3 and 417 ± 296 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 11), 995 ± 908 μg/L for methoxyacetylfentanyl, (n = 3), 1,874 ± 1,710 and 6,582 ± 3,252 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 5), 146 ± 318 and 300 ± 710 μg/L for fentanyl (n = 5) and norfentanyl (n = 6), respectively, 84.0 and 23.0 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), and 50.5 ± 50.9 μg/L for 4-ANPP (n = 10). Average hair concentrations were 2,670 ± 184 and 82.1 ± 94.7 ng/g for fentanyl and norfentanyl, respectively (n = 2), and 10.8 ± 0.57 ng/g for 4-ANPP (n = 2).

Authors+Show Affiliations

Section of Legal Medicine, Università Politecnica Delle Marche, Ancona, Italy.Unit of Forensic Toxicology, Università la Sapienza, Rome, Italy.Section of Legal Medicine, Università Politecnica Delle Marche, Ancona, Italy.Section of Legal Medicine, Università Politecnica Delle Marche, Ancona, Italy.National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy.Comedical S.r.l., Trento, Italy.National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31001514

Citation

Busardò, Francesco Paolo, et al. "Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair." Frontiers in Chemistry, vol. 7, 2019, p. 184.
Busardò FP, Carlier J, Giorgetti R, et al. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair. Front Chem. 2019;7:184.
Busardò, F. P., Carlier, J., Giorgetti, R., Tagliabracci, A., Pacifici, R., Gottardi, M., & Pichini, S. (2019). Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair. Frontiers in Chemistry, 7, 184. https://doi.org/10.3389/fchem.2019.00184
Busardò FP, et al. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair. Front Chem. 2019;7:184. PubMed PMID: 31001514.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair. AU - Busardò,Francesco Paolo, AU - Carlier,Jeremy, AU - Giorgetti,Raffaele, AU - Tagliabracci,Adriano, AU - Pacifici,Roberta, AU - Gottardi,Massimo, AU - Pichini,Simona, Y1 - 2019/04/02/ PY - 2019/01/12/received PY - 2019/03/11/accepted PY - 2019/4/20/entrez PY - 2019/4/20/pubmed PY - 2019/4/20/medline KW - UHPLC-MS/MS KW - blood KW - fentanyl KW - fentanyl analogs KW - hair KW - urine SP - 184 EP - 184 JF - Frontiers in chemistry JO - Front Chem VL - 7 N2 - Recently, synthetic opioid-related overdose fatalities, led by illicitly manufactured fentanyl and analogs, increased at an alarming rate, posing a global public health threat. New synthetic fentanyl analogs have been constantly emerging onto the drug marked for the last few years, to circumvent the laws and avoid analytical detection. Analytical methods need to be regularly updated to keep up with the new trends. In this study, we aimed to develop a new method for detecting the newest fentanyl analogs with a high sensitivity, in whole blood, urine, and hair. The method is intended to provide to clinical and forensic toxicologists a tool for documenting consumption. We developed a comprehensive ultra-high-performance liquid chromatography-tandem mass spectrometry method for quantifying fentanyl and 22 analogs and metabolites. Urine samples were simply diluted before injection; a liquid-liquid extraction was performed for blood testing; and a solid phase extraction was performed in hair. The chromatographic separation was short (8 min). The method was validated with a high sensitivity; limits of quantifications ranged from 2 to 6 ng/L in blood and urine, and from 11 to 21 pg/g in hair. The suitability of the method was tested with 42 postmortem blood, urine, or hair specimens from 27 fatalities in which fentanyl analogs were involved. Average blood concentrations (±SD) were 7.84 ± 7.21 and 30.0 ± 18.0 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 8), 4.08 ± 2.30 μg/L for methoxyacetylfentanyl, (n = 4), 40.2 ± 38.6 and 44.5 ± 21.1 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 3), 33.7 and 7.17 μg/L for fentanyl and norfentanyl, respectively (n = 1), 3.60 and 0.90 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), 0.67 μg/L for sufentanil (n = 1), and 3.13 ± 2.37 μg/L for 4-ANPP (n = 9). Average urine concentrations were 47.7 ± 39.3 and 417 ± 296 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 11), 995 ± 908 μg/L for methoxyacetylfentanyl, (n = 3), 1,874 ± 1,710 and 6,582 ± 3,252 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 5), 146 ± 318 and 300 ± 710 μg/L for fentanyl (n = 5) and norfentanyl (n = 6), respectively, 84.0 and 23.0 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), and 50.5 ± 50.9 μg/L for 4-ANPP (n = 10). Average hair concentrations were 2,670 ± 184 and 82.1 ± 94.7 ng/g for fentanyl and norfentanyl, respectively (n = 2), and 10.8 ± 0.57 ng/g for 4-ANPP (n = 2). SN - 2296-2646 UR - https://www.unboundmedicine.com/medline/citation/31001514/Ultra_High_Performance_Liquid_Chromatography_Tandem_Mass_Spectrometry_Assay_for_Quantifying_Fentanyl_and_22_Analogs_and_Metabolites_in_Whole_Blood_Urine_and_Hair_ L2 - https://doi.org/10.3389/fchem.2019.00184 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.