Tags

Type your tag names separated by a space and hit enter

Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential.
Water Res. 2019 Aug 01; 159:111-121.WR

Abstract

The combination of peroxymonosulfate (PMS) and electrolysis with an activated carbon fiber (ACF) as cathode (E-ACF-PMS) was systematically investigated. A synergistic effect was observed in the E-ACF-PMS process. Compared with the E-ACF-PDS process, the E-ACF-PMS process spent one-third as much energy for elimination of carbamazepine (CBZ). Increased PMS concentration, current density, and pH value significantly enhanced CBZ elimination. It was also noted that the presence of phosphate (PO43-), bicarbonate (HCO3-), and humic acid (HA) inhibited CBZ removal, while the presence of chloride ion (Cl-) accelerated it. According to radical scavenging experiments and the estimation of relative contribution, reactive oxygen species oxidation (including OH, SO4•-, and 1O2) played an important role in CBZ degradation, accounting for 75.67%. We systematically explored the production mechanism for 1O2 and the results demonstrated that 1O2 was mainly generated on the cathode, rather than generated by O2•- or O2 reported by other researchers. Possible degradation pathways for CBZ in E-ACF-PMS process were also proposed. Finally, the potential for practical applications was explored and compared with E-ACF-PDS. The results of SEM images, BET, and nitrogen adsorption isotherm before and after ACF reuse for 50 times suggested that ACF could maintain its adsorption capacity and catalytic ability in the E-ACF-PMS process. Testing also suggested that the protection of ACF in electrochemical oxidation was based on its relatively high current intensity and removal efficiency. The removal efficiencies of other organic pollutants, including nitrobenzene (NB), sulfamethoxazole (SMX), diclofenac (DC), and tetracycline (TC) were also evaluated. In addition, experiments were conducted to study the effects of different water matrices and toxicology implications and results demonstrated that substituting PMS for PDS in an E-ACF system could create a more efficient, sustainable, and with less secondary toxicity process for wastewater treatment.

Authors+Show Affiliations

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0071, USA.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China. Electronic address: pureson@163.com.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0071, USA. Electronic address: dionysios.d.dionysiou@uc.edu.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31082642

Citation

Liu, Zhen, et al. "Electrochemical Activation of Peroxymonosulfate With ACF Cathode: Kinetics, Influencing Factors, Mechanism, and Application Potential." Water Research, vol. 159, 2019, pp. 111-121.
Liu Z, Ding H, Zhao C, et al. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. Water Res. 2019;159:111-121.
Liu, Z., Ding, H., Zhao, C., Wang, T., Wang, P., & Dionysiou, D. D. (2019). Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. Water Research, 159, 111-121. https://doi.org/10.1016/j.watres.2019.04.052
Liu Z, et al. Electrochemical Activation of Peroxymonosulfate With ACF Cathode: Kinetics, Influencing Factors, Mechanism, and Application Potential. Water Res. 2019 Aug 1;159:111-121. PubMed PMID: 31082642.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. AU - Liu,Zhen, AU - Ding,Haojie, AU - Zhao,Chun, AU - Wang,Tuo, AU - Wang,Pu, AU - Dionysiou,Dionysios D, Y1 - 2019/05/01/ PY - 2019/01/28/received PY - 2019/04/15/revised PY - 2019/04/27/accepted PY - 2019/5/15/pubmed PY - 2019/11/5/medline PY - 2019/5/15/entrez KW - Activated carbon fiber KW - Byproduct KW - Electrochemical oxidation KW - Peroxymonosulfate KW - Persistent organic pollutant KW - Singlet oxygen KW - Toxicology SP - 111 EP - 121 JF - Water research JO - Water Res. VL - 159 N2 - The combination of peroxymonosulfate (PMS) and electrolysis with an activated carbon fiber (ACF) as cathode (E-ACF-PMS) was systematically investigated. A synergistic effect was observed in the E-ACF-PMS process. Compared with the E-ACF-PDS process, the E-ACF-PMS process spent one-third as much energy for elimination of carbamazepine (CBZ). Increased PMS concentration, current density, and pH value significantly enhanced CBZ elimination. It was also noted that the presence of phosphate (PO43-), bicarbonate (HCO3-), and humic acid (HA) inhibited CBZ removal, while the presence of chloride ion (Cl-) accelerated it. According to radical scavenging experiments and the estimation of relative contribution, reactive oxygen species oxidation (including OH, SO4•-, and 1O2) played an important role in CBZ degradation, accounting for 75.67%. We systematically explored the production mechanism for 1O2 and the results demonstrated that 1O2 was mainly generated on the cathode, rather than generated by O2•- or O2 reported by other researchers. Possible degradation pathways for CBZ in E-ACF-PMS process were also proposed. Finally, the potential for practical applications was explored and compared with E-ACF-PDS. The results of SEM images, BET, and nitrogen adsorption isotherm before and after ACF reuse for 50 times suggested that ACF could maintain its adsorption capacity and catalytic ability in the E-ACF-PMS process. Testing also suggested that the protection of ACF in electrochemical oxidation was based on its relatively high current intensity and removal efficiency. The removal efficiencies of other organic pollutants, including nitrobenzene (NB), sulfamethoxazole (SMX), diclofenac (DC), and tetracycline (TC) were also evaluated. In addition, experiments were conducted to study the effects of different water matrices and toxicology implications and results demonstrated that substituting PMS for PDS in an E-ACF system could create a more efficient, sustainable, and with less secondary toxicity process for wastewater treatment. SN - 1879-2448 UR - https://www.unboundmedicine.com/medline/citation/31082642/Electrochemical_activation_of_peroxymonosulfate_with_ACF_cathode:_Kinetics_influencing_factors_mechanism_and_application_potential_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0043-1354(19)30369-0 DB - PRIME DP - Unbound Medicine ER -