Tags

Type your tag names separated by a space and hit enter

Development and evaluation of a patient-specific surgical simulator for endoscopic colloid cyst resection.
J Neurosurg 2019; :1-9JN

Abstract

OBJECTIVE

Endoscopic resection of third-ventricle colloid cysts is technically challenging due to the limited dexterity and visualization provided by neuroendoscopic instruments. Extensive training and experience are required to master the learning curve. To improve the education of neurosurgical trainees in this procedure, a synthetic surgical simulator was developed and its realism, procedural content, and utility as a training instrument were evaluated.

METHODS

The simulator was developed based on the neuroimaging (axial noncontrast CT and T1-weighted gadolinium-enhanced MRI) of an 8-year-old patient with a colloid cyst and hydrocephalus. Image segmentation, computer-aided design, rapid prototyping (3D printing), and silicone molding techniques were used to produce models of the skull, brain, ventricles, and colloid cyst. The cyst was filled with a viscous fluid and secured to the roof of the third ventricle. The choroid plexus and intraventricular veins were also included. Twenty-four neurosurgical trainees performed a simulated colloid cyst resection using a 30° angled endoscope, neuroendoscopic instruments, and image guidance. Using a 19-item feedback survey (5-point Likert scales), participants evaluated the simulator across 5 domains: anatomy, instrument handling, procedural content, perceived realism, and confidence and comfort level.

RESULTS

Participants found the simulator's anatomy to be highly realistic (mean 4.34 ± 0.63 [SD]) and appreciated the use of actual instruments (mean 4.38 ± 0.58). The procedural content was also rated highly (mean 4.28 ± 0.77); however, the perceived realism was rated slightly lower (mean 4.08 ± 0.63). Participants reported greater confidence in their ability to perform an endoscopic colloid cyst resection after using the simulator (mean 4.45 ± 0.68). Twenty-three participants (95.8%) indicated that they would use the simulator for additional training. Recommendations were made to develop complex case scenarios for experienced trainees (normal-sized ventricles, choroid plexus adherent to cyst wall, bleeding scenarios) and incorporate advanced instrumentation such as side-cutting aspiration devices.

CONCLUSIONS

A patient-specific synthetic surgical simulator for training residents and fellows in endoscopic colloid cyst resection was successfully developed. The simulator's anatomy, instrument handling, and procedural content were found to be realistic. The simulator may serve as a valuable educational tool to learn the critical steps of endoscopic colloid cyst resection, develop a detailed understanding of intraventricular anatomy, and gain proficiency with bimanual neuroendoscopic techniques.

Authors+Show Affiliations

1Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto. 2Division of Neurosurgery, Department of Surgery, and. 3Institute of Biomaterials and Biomedical Engineering, University of Toronto; and.1Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto.4Division of Clinical Neurological Sciences, Western University, London, Ontario, Canada.1Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto. 3Institute of Biomaterials and Biomedical Engineering, University of Toronto; and.1Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto. 2Division of Neurosurgery, Department of Surgery, and. 3Institute of Biomaterials and Biomedical Engineering, University of Toronto; and.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31252392

Citation

Bodani, Vivek P., et al. "Development and Evaluation of a Patient-specific Surgical Simulator for Endoscopic Colloid Cyst Resection." Journal of Neurosurgery, 2019, pp. 1-9.
Bodani VP, Breimer GE, Haji FA, et al. Development and evaluation of a patient-specific surgical simulator for endoscopic colloid cyst resection. J Neurosurg. 2019.
Bodani, V. P., Breimer, G. E., Haji, F. A., Looi, T., & Drake, J. M. (2019). Development and evaluation of a patient-specific surgical simulator for endoscopic colloid cyst resection. Journal of Neurosurgery, pp. 1-9. doi:10.3171/2019.4.JNS183184.
Bodani VP, et al. Development and Evaluation of a Patient-specific Surgical Simulator for Endoscopic Colloid Cyst Resection. J Neurosurg. 2019 Jun 28;1-9. PubMed PMID: 31252392.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Development and evaluation of a patient-specific surgical simulator for endoscopic colloid cyst resection. AU - Bodani,Vivek P, AU - Breimer,Gerben E, AU - Haji,Faizal A, AU - Looi,Thomas, AU - Drake,James M, Y1 - 2019/06/28/ PY - 2018/11/14/received PY - 2019/04/11/accepted PY - 2019/6/29/entrez PY - 2019/6/30/pubmed PY - 2019/6/30/medline KW - CAD = Canadian dollars KW - EM = electromagnetic KW - IQR = interquartile range KW - PGY = postgraduate year KW - VR = virtual reality KW - colloid cysts KW - hydrocephalus KW - medical education KW - neuroendoscopy KW - simulation training KW - surgical technique SP - 1 EP - 9 JF - Journal of neurosurgery JO - J. Neurosurg. N2 - OBJECTIVE: Endoscopic resection of third-ventricle colloid cysts is technically challenging due to the limited dexterity and visualization provided by neuroendoscopic instruments. Extensive training and experience are required to master the learning curve. To improve the education of neurosurgical trainees in this procedure, a synthetic surgical simulator was developed and its realism, procedural content, and utility as a training instrument were evaluated. METHODS: The simulator was developed based on the neuroimaging (axial noncontrast CT and T1-weighted gadolinium-enhanced MRI) of an 8-year-old patient with a colloid cyst and hydrocephalus. Image segmentation, computer-aided design, rapid prototyping (3D printing), and silicone molding techniques were used to produce models of the skull, brain, ventricles, and colloid cyst. The cyst was filled with a viscous fluid and secured to the roof of the third ventricle. The choroid plexus and intraventricular veins were also included. Twenty-four neurosurgical trainees performed a simulated colloid cyst resection using a 30° angled endoscope, neuroendoscopic instruments, and image guidance. Using a 19-item feedback survey (5-point Likert scales), participants evaluated the simulator across 5 domains: anatomy, instrument handling, procedural content, perceived realism, and confidence and comfort level. RESULTS: Participants found the simulator's anatomy to be highly realistic (mean 4.34 ± 0.63 [SD]) and appreciated the use of actual instruments (mean 4.38 ± 0.58). The procedural content was also rated highly (mean 4.28 ± 0.77); however, the perceived realism was rated slightly lower (mean 4.08 ± 0.63). Participants reported greater confidence in their ability to perform an endoscopic colloid cyst resection after using the simulator (mean 4.45 ± 0.68). Twenty-three participants (95.8%) indicated that they would use the simulator for additional training. Recommendations were made to develop complex case scenarios for experienced trainees (normal-sized ventricles, choroid plexus adherent to cyst wall, bleeding scenarios) and incorporate advanced instrumentation such as side-cutting aspiration devices. CONCLUSIONS: A patient-specific synthetic surgical simulator for training residents and fellows in endoscopic colloid cyst resection was successfully developed. The simulator's anatomy, instrument handling, and procedural content were found to be realistic. The simulator may serve as a valuable educational tool to learn the critical steps of endoscopic colloid cyst resection, develop a detailed understanding of intraventricular anatomy, and gain proficiency with bimanual neuroendoscopic techniques. SN - 1933-0693 UR - https://www.unboundmedicine.com/medline/citation/31252392/Development_and_evaluation_of_a_patient_specific_surgical_simulator_for_endoscopic_colloid_cyst_resection_ L2 - https://thejns.org/doi/10.3171/2019.4.JNS183184 DB - PRIME DP - Unbound Medicine ER -