Tags

Type your tag names separated by a space and hit enter

A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants.
Sci Rep. 2019 07 18; 9(1):10416.SR

Abstract

Understanding nanoparticle root uptake and root-to-shoot transport might contribute to the use of nanotechnology in plant nutrition. This study performed time resolved experiments to probe Zn uptake, biotransformation and physiological effects on Phaseolus vulgaris (L.). Plants roots were exposed to ZnO nanoparticles (40 and 300 nm) dispersions and ZnSO4(aq) (100 and 1000 mg Zn L-1) for 48 h. Near edge X-ray absorption spectroscopy showed that 40 nm ZnO was more easily dissolved by roots than 300 nm ZnO. It also showed that in the leaves Zn was found as a mixture Zn3(PO4)2 and Zn-histidine complex. X-ray fluorescence spectroscopy showed that root-to-shoot Zn-translocation presented a decreasing gradient of concentration and velocity, it seems radial Zn movement occurs simultaneously to the axial xylem transport. Below 100 mg Zn L-1, the lower stem tissue section served as a buffer preventing Zn from reaching the leaves. Conversely, it was not observed for 1000 mg Zn L-1 ZnSO4(aq). Transcriptional analysis of genes encoding metal carriers indicated higher expression levels of tonoplast-localized transporters, suggesting that the mechanism trend to accumulate Zn in the lower tissues may be associated with an enhanced of Zn compartmentalization in vacuoles. The photosynthetic rate, transpiration, and water conductance were impaired by treatments.

Authors+Show Affiliations

University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.University of Sao Paulo, Center for Nuclear Energy in Agriculture, Plant Nutrition Laboratory, Piracicaba, 13416000, Brazil.University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil. hudson@cena.usp.br.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

31320668

Citation

da Cruz, Tatiana N M., et al. "A New Glance On Root-to-shoot in Vivo Zinc Transport and Time-dependent Physiological Effects of ZnSO4 and ZnO Nanoparticles On Plants." Scientific Reports, vol. 9, no. 1, 2019, p. 10416.
da Cruz TNM, Savassa SM, Montanha GS, et al. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci Rep. 2019;9(1):10416.
da Cruz, T. N. M., Savassa, S. M., Montanha, G. S., Ishida, J. K., de Almeida, E., Tsai, S. M., Lavres Junior, J., & Pereira de Carvalho, H. W. (2019). A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Scientific Reports, 9(1), 10416. https://doi.org/10.1038/s41598-019-46796-3
da Cruz TNM, et al. A New Glance On Root-to-shoot in Vivo Zinc Transport and Time-dependent Physiological Effects of ZnSO4 and ZnO Nanoparticles On Plants. Sci Rep. 2019 07 18;9(1):10416. PubMed PMID: 31320668.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. AU - da Cruz,Tatiana N M, AU - Savassa,Susilaine M, AU - Montanha,Gabriel S, AU - Ishida,Juliane K, AU - de Almeida,Eduardo, AU - Tsai,Siu M, AU - Lavres Junior,José, AU - Pereira de Carvalho,Hudson W, Y1 - 2019/07/18/ PY - 2018/06/25/received PY - 2019/05/02/accepted PY - 2019/7/20/entrez PY - 2019/7/20/pubmed PY - 2020/10/29/medline SP - 10416 EP - 10416 JF - Scientific reports JO - Sci Rep VL - 9 IS - 1 N2 - Understanding nanoparticle root uptake and root-to-shoot transport might contribute to the use of nanotechnology in plant nutrition. This study performed time resolved experiments to probe Zn uptake, biotransformation and physiological effects on Phaseolus vulgaris (L.). Plants roots were exposed to ZnO nanoparticles (40 and 300 nm) dispersions and ZnSO4(aq) (100 and 1000 mg Zn L-1) for 48 h. Near edge X-ray absorption spectroscopy showed that 40 nm ZnO was more easily dissolved by roots than 300 nm ZnO. It also showed that in the leaves Zn was found as a mixture Zn3(PO4)2 and Zn-histidine complex. X-ray fluorescence spectroscopy showed that root-to-shoot Zn-translocation presented a decreasing gradient of concentration and velocity, it seems radial Zn movement occurs simultaneously to the axial xylem transport. Below 100 mg Zn L-1, the lower stem tissue section served as a buffer preventing Zn from reaching the leaves. Conversely, it was not observed for 1000 mg Zn L-1 ZnSO4(aq). Transcriptional analysis of genes encoding metal carriers indicated higher expression levels of tonoplast-localized transporters, suggesting that the mechanism trend to accumulate Zn in the lower tissues may be associated with an enhanced of Zn compartmentalization in vacuoles. The photosynthetic rate, transpiration, and water conductance were impaired by treatments. SN - 2045-2322 UR - https://www.unboundmedicine.com/medline/citation/31320668/A_new_glance_on_root_to_shoot_in_vivo_zinc_transport_and_time_dependent_physiological_effects_of_ZnSO4_and_ZnO_nanoparticles_on_plants_ L2 - https://doi.org/10.1038/s41598-019-46796-3 DB - PRIME DP - Unbound Medicine ER -