Tags

Type your tag names separated by a space and hit enter

Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men.
Exp Physiol. 2019 10; 104(10):1494-1504.EP

Abstract

NEW FINDINGS

What is the central question of this study? What are the effects of isomaltulose, an ingredient in carbohydrate-electrolyte beverages to maintain glycaemia and attenuate the risk of dehydration during exercise heat stress, on postexercise rehydration and physiological heat loss responses? What is the main finding and its importance? Consumption of a 6.5% isomaltulose-electrolyte beverage following exercise heat stress restored hydration following a 2 h recovery as compared to a 2% solution or water only. While the 6.5% isomaltulose-electrolytes increased plasma volume and plasma osmolality, which are known to modulate postexercise heat loss, sweating and cutaneous vascular responses did not differ between conditions. Consequently, ingestion beverages containing 6.5% isomaltulose-electrolytes enhanced postexercise rehydration without affecting heat loss responses.

ABSTRACT

Isomaltulose is a disaccharide carbohydrate widely used during exercise to maintain glycaemia and hydration. We investigated the effects of ingesting a beverage containing isomaltulose and electrolytes on postexercise hydration state and physiological heat loss responses. In a randomized, single-blind cross-over design, 10 young healthy men were hypohydrated by performing up to three 30 min successive moderate-intensity (50% heart rate reserve) bouts of cycling, each separated by 10 min, while wearing a water-perfusion suit heated to 45°C. The protocol continued until a 2% reduction in body mass was achieved. Thereafter, participants performed a final 15 min moderate-intensity exercise bout followed by a 2 h recovery. Following cessation of exercise, participants ingested a beverage consisting of (i) water only (Water), (ii) 2% isomaltulose (CHO-2%), or (iii) 6.5% isomaltulose (CHO-6.5%) equal to the volume of 2% body mass loss within the first 30 min of the recovery. Changes in plasma volume (ΔPV) after fluid ingestion were greater for CHO-6.5% compared with CHO-2% (120 min postexercise) and Water (90 and 120 min) (all P ≤ 0.040). Plasma osmolality remained elevated with CHO-6.5% compared with consumption of the other beverages at 30 and 90 min postexercise (all P ≤ 0.050). Urine output tended to be reduced with CHO-6.5% compared to other fluid conditions (main effect, P = 0.069). Rectal and mean skin temperatures, chest sweat rate and cutaneous perfusion did not differ between conditions (all P > 0.05). In conclusion, compared with CHO-2% and Water, consuming a beverage consisting of CHO-6.5% and electrolytes during recovery under heat stress enhances PV recovery without modulating physiological heat loss responses.

Authors+Show Affiliations

Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan.Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan.Laboratory for Human Performance Research, Osaka International University, Osaka, Japan.Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.Bourbon Institutes of Health Nutraceuticals Science Laboratory, Bourbon Corporation, Niigata, Japan.Bourbon Institutes of Health Nutraceuticals Science Laboratory, Bourbon Corporation, Niigata, Japan.Bourbon Institutes of Health Nutraceuticals Science Laboratory, Bourbon Corporation, Niigata, Japan.

Pub Type(s)

Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

31400765

Citation

Amano, Tatsuro, et al. "Effects of Isomaltulose Ingestion On Postexercise Hydration State and Heat Loss Responses in Young Men." Experimental Physiology, vol. 104, no. 10, 2019, pp. 1494-1504.
Amano T, Sugiyama Y, Okumura J, et al. Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Exp Physiol. 2019;104(10):1494-1504.
Amano, T., Sugiyama, Y., Okumura, J., Fujii, N., Kenny, G. P., Nishiyasu, T., Inoue, Y., Kondo, N., Sasagawa, K., Enoki, Y., & Maejima, D. (2019). Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Experimental Physiology, 104(10), 1494-1504. https://doi.org/10.1113/EP087843
Amano T, et al. Effects of Isomaltulose Ingestion On Postexercise Hydration State and Heat Loss Responses in Young Men. Exp Physiol. 2019;104(10):1494-1504. PubMed PMID: 31400765.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. AU - Amano,Tatsuro, AU - Sugiyama,Yuki, AU - Okumura,Junya, AU - Fujii,Naoto, AU - Kenny,Glen P, AU - Nishiyasu,Takeshi, AU - Inoue,Yoshimitsu, AU - Kondo,Narihiko, AU - Sasagawa,Katsumi, AU - Enoki,Yasuaki, AU - Maejima,Daisuke, Y1 - 2019/08/26/ PY - 2019/05/09/received PY - 2019/08/07/revised PY - 2019/08/08/accepted PY - 2019/8/11/pubmed PY - 2020/8/8/medline PY - 2019/8/11/entrez KW - carbohydrate drink KW - postexercise thermoregulation KW - rehydration SP - 1494 EP - 1504 JF - Experimental physiology JO - Exp Physiol VL - 104 IS - 10 N2 - NEW FINDINGS: What is the central question of this study? What are the effects of isomaltulose, an ingredient in carbohydrate-electrolyte beverages to maintain glycaemia and attenuate the risk of dehydration during exercise heat stress, on postexercise rehydration and physiological heat loss responses? What is the main finding and its importance? Consumption of a 6.5% isomaltulose-electrolyte beverage following exercise heat stress restored hydration following a 2 h recovery as compared to a 2% solution or water only. While the 6.5% isomaltulose-electrolytes increased plasma volume and plasma osmolality, which are known to modulate postexercise heat loss, sweating and cutaneous vascular responses did not differ between conditions. Consequently, ingestion beverages containing 6.5% isomaltulose-electrolytes enhanced postexercise rehydration without affecting heat loss responses. ABSTRACT: Isomaltulose is a disaccharide carbohydrate widely used during exercise to maintain glycaemia and hydration. We investigated the effects of ingesting a beverage containing isomaltulose and electrolytes on postexercise hydration state and physiological heat loss responses. In a randomized, single-blind cross-over design, 10 young healthy men were hypohydrated by performing up to three 30 min successive moderate-intensity (50% heart rate reserve) bouts of cycling, each separated by 10 min, while wearing a water-perfusion suit heated to 45°C. The protocol continued until a 2% reduction in body mass was achieved. Thereafter, participants performed a final 15 min moderate-intensity exercise bout followed by a 2 h recovery. Following cessation of exercise, participants ingested a beverage consisting of (i) water only (Water), (ii) 2% isomaltulose (CHO-2%), or (iii) 6.5% isomaltulose (CHO-6.5%) equal to the volume of 2% body mass loss within the first 30 min of the recovery. Changes in plasma volume (ΔPV) after fluid ingestion were greater for CHO-6.5% compared with CHO-2% (120 min postexercise) and Water (90 and 120 min) (all P ≤ 0.040). Plasma osmolality remained elevated with CHO-6.5% compared with consumption of the other beverages at 30 and 90 min postexercise (all P ≤ 0.050). Urine output tended to be reduced with CHO-6.5% compared to other fluid conditions (main effect, P = 0.069). Rectal and mean skin temperatures, chest sweat rate and cutaneous perfusion did not differ between conditions (all P > 0.05). In conclusion, compared with CHO-2% and Water, consuming a beverage consisting of CHO-6.5% and electrolytes during recovery under heat stress enhances PV recovery without modulating physiological heat loss responses. SN - 1469-445X UR - https://www.unboundmedicine.com/medline/citation/31400765/Effects_of_isomaltulose_ingestion_on_postexercise_hydration_state_and_heat_loss_responses_in_young_men_ L2 - https://doi.org/10.1113/EP087843 DB - PRIME DP - Unbound Medicine ER -