Tags

Type your tag names separated by a space and hit enter

Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content.
Ecotoxicol Environ Saf. 2019 Nov 15; 183:109567.EE

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice to maintain high grain yields during wheat production. However, the effects of soil water content on the accumulation and translocation of PAHs in wheat are still not clear. The main objectives of the present study were to investigate the effects of soil water content on the accumulation of three selected PAHs (Σ3PAHs, phenanthrene, anthracene and pyrene) in wheat during whole plant growth stage and on translocation or remobilization of Σ3PAHs from vegetative tissues to wheat grains. Winter wheat (Triticum aestivum cv. Xiaoyan22) were grown on Σ3PAHs spiked soils maintaining 80%, 60% or 40% water-holding capacity during the whole plant growth stage. Plant samplings were performed at jointing, anthesis or maturity stage, respectively. The present study showed that grain yield and biomass of the crop increased with soil water content increasing. Transpiration rate of wheat leaf under 80% and 60% water-holding capacity treatments was significantly (p < 0.05) higher than that under 40% water-holding capacity treatment at both anthesis and filling stage. Soil water content and plant growth stage had significant (p < 0.0001) effects on concentrations of phenanthrene, anthracene and pyrene in winter wheat. When exposed to 0, 15, 60, and 150 mg kg-1 Σ3PAHs in soils, Σ3PAHs concentrations in the grains under 60% water-holding capacity treatment were 46.6%, 69.9%, 89.5% and 81.7% of those under 80% water-holding capacity treatment, respectively. The highest concentrations of Σ3PAHs in the crop were recorded at anthesis stage. The distribution of PAHs in different tissues of wheat varied among different soil water treatments and plant growth stages. The present study indicated that optimizing soil water content during winter wheat production could apparently reduce concentrations of Σ3PAHs in grains via influence root uptake of Σ3PAHs and translocation of Σ3PAHs from stem or leaf into grain, suggesting the potential of water management to cope with PAHs contamination in crops growing on PAHs contaminated soils.

Authors+Show Affiliations

College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China. Electronic address: wfy09@163.com.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31442802

Citation

Wu, Fuyong, et al. "Accumulation and Translocation of Phenanthrene, Anthracene and Pyrene in Winter Wheat Affected By Soil Water Content." Ecotoxicology and Environmental Safety, vol. 183, 2019, p. 109567.
Wu F, Tian K, Wang J, et al. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicol Environ Saf. 2019;183:109567.
Wu, F., Tian, K., Wang, J., Bao, H., Luo, W., Zhang, H., & Hong, H. (2019). Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicology and Environmental Safety, 183, 109567. https://doi.org/10.1016/j.ecoenv.2019.109567
Wu F, et al. Accumulation and Translocation of Phenanthrene, Anthracene and Pyrene in Winter Wheat Affected By Soil Water Content. Ecotoxicol Environ Saf. 2019 Nov 15;183:109567. PubMed PMID: 31442802.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. AU - Wu,Fuyong, AU - Tian,Kai, AU - Wang,Jinfeng, AU - Bao,Huanyu, AU - Luo,Wanqing, AU - Zhang,He, AU - Hong,Huachang, Y1 - 2019/08/20/ PY - 2019/04/23/received PY - 2019/07/22/revised PY - 2019/08/12/accepted PY - 2019/8/24/pubmed PY - 2019/11/28/medline PY - 2019/8/24/entrez KW - Grain PAHs KW - PAHs dynamic accumulation KW - PAHs remobilization KW - Triticum aestivum L. KW - Water management SP - 109567 EP - 109567 JF - Ecotoxicology and environmental safety JO - Ecotoxicol Environ Saf VL - 183 N2 - Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice to maintain high grain yields during wheat production. However, the effects of soil water content on the accumulation and translocation of PAHs in wheat are still not clear. The main objectives of the present study were to investigate the effects of soil water content on the accumulation of three selected PAHs (Σ3PAHs, phenanthrene, anthracene and pyrene) in wheat during whole plant growth stage and on translocation or remobilization of Σ3PAHs from vegetative tissues to wheat grains. Winter wheat (Triticum aestivum cv. Xiaoyan22) were grown on Σ3PAHs spiked soils maintaining 80%, 60% or 40% water-holding capacity during the whole plant growth stage. Plant samplings were performed at jointing, anthesis or maturity stage, respectively. The present study showed that grain yield and biomass of the crop increased with soil water content increasing. Transpiration rate of wheat leaf under 80% and 60% water-holding capacity treatments was significantly (p < 0.05) higher than that under 40% water-holding capacity treatment at both anthesis and filling stage. Soil water content and plant growth stage had significant (p < 0.0001) effects on concentrations of phenanthrene, anthracene and pyrene in winter wheat. When exposed to 0, 15, 60, and 150 mg kg-1 Σ3PAHs in soils, Σ3PAHs concentrations in the grains under 60% water-holding capacity treatment were 46.6%, 69.9%, 89.5% and 81.7% of those under 80% water-holding capacity treatment, respectively. The highest concentrations of Σ3PAHs in the crop were recorded at anthesis stage. The distribution of PAHs in different tissues of wheat varied among different soil water treatments and plant growth stages. The present study indicated that optimizing soil water content during winter wheat production could apparently reduce concentrations of Σ3PAHs in grains via influence root uptake of Σ3PAHs and translocation of Σ3PAHs from stem or leaf into grain, suggesting the potential of water management to cope with PAHs contamination in crops growing on PAHs contaminated soils. SN - 1090-2414 UR - https://www.unboundmedicine.com/medline/citation/31442802/Accumulation_and_translocation_of_phenanthrene_anthracene_and_pyrene_in_winter_wheat_affected_by_soil_water_content_ DB - PRIME DP - Unbound Medicine ER -