Tags

Type your tag names separated by a space and hit enter

Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens.
Insect Biochem Mol Biol 2019; 115:103246IB

Abstract

The brown planthopper (BPH) Nilaparvata lugens contains two insulin receptor homologues, designated NlInR1 and NlInR2. NlInR1 is strikingly homologous to the typical InR in insects and vertebrates, containing a ligand-activated intracellular tyrosine kinase catalytic domain. Herein, we report an optimized CRISPR/Cas9 system to induce mutations in the NlInR1 locus in BPH, consisting of a Cas9 plasmid that is specifically expressed in the germline via the Nlvasa promoter and versatile sgRNA expression plasmids under the control of the U6 promoter. We systematically evaluated the efficiency of injection mix compositions and demonstrated an appropriate combination of Cas9/sgRNA to target essential genes. Furthermore, we showed that homozygous mutants for the NlInR1 gene are early embryonic lethal, whereas heterozygous mutants grow more slowly, exhibit a severe reduction in body weight and wing size and live longer than the wild type. Interestingly, the severity of the mutant phenotype was different when targeting distinct important domains of the NlInR1 locus. The severity of the mutant phenotype is similar to that of insulin/insulin-like growth factor (IGF) signaling pathway deficiencies in vertebrates, suggesting a conserved function of NlInR1 in the regulation of development and longevity. Global expression profiling suggests that NlInR1 regulates many cellular processes in BPH, including insulin resistance, phototransduction, metabolism, endocytosis, longevity, biosynthesis and protein processing. Our results also pave the way for understanding the precise molecular mechanism of insulin signaling in wing polyphenism in insects.

Authors+Show Affiliations

State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. Electronic address: lsszwq@mail.sysu.edu.cn.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31618682

Citation

Zhao, Yu, et al. "Mutations in NlInR1 Affect Normal Growth and Lifespan in the Brown Planthopper Nilaparvata Lugens." Insect Biochemistry and Molecular Biology, vol. 115, 2019, p. 103246.
Zhao Y, Huang G, Zhang W. Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. Insect Biochem Mol Biol. 2019;115:103246.
Zhao, Y., Huang, G., & Zhang, W. (2019). Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 115, p. 103246. doi:10.1016/j.ibmb.2019.103246.
Zhao Y, Huang G, Zhang W. Mutations in NlInR1 Affect Normal Growth and Lifespan in the Brown Planthopper Nilaparvata Lugens. Insect Biochem Mol Biol. 2019;115:103246. PubMed PMID: 31618682.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. AU - Zhao,Yu, AU - Huang,Gang, AU - Zhang,Wenqing, Y1 - 2019/10/13/ PY - 2019/08/01/received PY - 2019/10/07/revised PY - 2019/10/08/accepted PY - 2019/10/17/pubmed PY - 2019/10/17/medline PY - 2019/10/17/entrez KW - Brown planthopper (BPH) KW - CRISPR/Cas9 KW - Growth KW - Insulin/IGF signaling (IIS) KW - NlInR1 SP - 103246 EP - 103246 JF - Insect biochemistry and molecular biology JO - Insect Biochem. Mol. Biol. VL - 115 N2 - The brown planthopper (BPH) Nilaparvata lugens contains two insulin receptor homologues, designated NlInR1 and NlInR2. NlInR1 is strikingly homologous to the typical InR in insects and vertebrates, containing a ligand-activated intracellular tyrosine kinase catalytic domain. Herein, we report an optimized CRISPR/Cas9 system to induce mutations in the NlInR1 locus in BPH, consisting of a Cas9 plasmid that is specifically expressed in the germline via the Nlvasa promoter and versatile sgRNA expression plasmids under the control of the U6 promoter. We systematically evaluated the efficiency of injection mix compositions and demonstrated an appropriate combination of Cas9/sgRNA to target essential genes. Furthermore, we showed that homozygous mutants for the NlInR1 gene are early embryonic lethal, whereas heterozygous mutants grow more slowly, exhibit a severe reduction in body weight and wing size and live longer than the wild type. Interestingly, the severity of the mutant phenotype was different when targeting distinct important domains of the NlInR1 locus. The severity of the mutant phenotype is similar to that of insulin/insulin-like growth factor (IGF) signaling pathway deficiencies in vertebrates, suggesting a conserved function of NlInR1 in the regulation of development and longevity. Global expression profiling suggests that NlInR1 regulates many cellular processes in BPH, including insulin resistance, phototransduction, metabolism, endocytosis, longevity, biosynthesis and protein processing. Our results also pave the way for understanding the precise molecular mechanism of insulin signaling in wing polyphenism in insects. SN - 1879-0240 UR - https://www.unboundmedicine.com/medline/citation/31618682/Mutations_in_NlInR1_affect_normal_growth_and_lifespan_in_the_brown_planthopper_Nilaparvata_lugens L2 - https://linkinghub.elsevier.com/retrieve/pii/S0965-1748(19)30360-1 DB - PRIME DP - Unbound Medicine ER -