Tags

Type your tag names separated by a space and hit enter

Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel.
ACS Appl Mater Interfaces 2019; 11(44):41701-41709AA

Abstract

Flexible wearable soft epidermal sensors assembled from conductive hydrogels have recently attracted tremendous research attention because of their extensive and significant applications in body-attachable healthcare monitoring, ultrasensitive electronic skins, and personal healthcare diagnosis. However, traditional conductive hydrogels inevitably face the challenge of long-term usage under room temperature and cold conditions, due to the lost water, elasticity, and conductivity at room temperature, and freezing at the water icing temperatures. It severely limits the applications in flexible electronics at room temperature or cold environment. Herein, we report a flexible, wearable, antifreezing, and healable epidermal sensor assembled from an antifreezing, long-lasting moist, and conductive organohydrogel. The nanocomposite organohydrogel is prepared from the conformal coating of functionalized reduced graphene oxide network by the hydrogel polymer networks consisting of poly(vinyl alcohol), phenylboronic acid grafted alginate, and polyacrylamide in the binary ethylene glycol (EG)/H2O solvent system. The obtained organohydrogel exhibits excellent temperature tolerance (-40 °C), long-lasting moisture (20 days), reliable self-healing ability, and can be assembled as wearable sensor for an accurate detection of both large and tiny human activities under extreme environment. Thus, it paves the way for the design of highly sensitive wearable epidermal sensors with reliable long-lasting moisture and excellent temperature tolerance for potential versatile applications in electronic skins, wearable healthcare monitoring, and human-machine interaction.

Authors+Show Affiliations

Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31625378

Citation

Ma, Di, et al. "Wearable, Antifreezing, and Healable Epidermal Sensor Assembled From Long-Lasting Moist Conductive Nanocomposite Organohydrogel." ACS Applied Materials & Interfaces, vol. 11, no. 44, 2019, pp. 41701-41709.
Ma D, Wu X, Wang Y, et al. Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. ACS Appl Mater Interfaces. 2019;11(44):41701-41709.
Ma, D., Wu, X., Wang, Y., Liao, H., Wan, P., & Zhang, L. (2019). Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. ACS Applied Materials & Interfaces, 11(44), pp. 41701-41709. doi:10.1021/acsami.9b15412.
Ma D, et al. Wearable, Antifreezing, and Healable Epidermal Sensor Assembled From Long-Lasting Moist Conductive Nanocomposite Organohydrogel. ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41701-41709. PubMed PMID: 31625378.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. AU - Ma,Di, AU - Wu,Xiaoxuan, AU - Wang,Yonggang, AU - Liao,Hui, AU - Wan,Pengbo, AU - Zhang,Liqun, Y1 - 2019/10/28/ PY - 2019/10/19/pubmed PY - 2019/10/19/medline PY - 2019/10/19/entrez KW - antifreezing KW - conductive nanocomposite organohydrogel KW - graphene KW - long-lasting moisture KW - wearable sensor SP - 41701 EP - 41709 JF - ACS applied materials & interfaces JO - ACS Appl Mater Interfaces VL - 11 IS - 44 N2 - Flexible wearable soft epidermal sensors assembled from conductive hydrogels have recently attracted tremendous research attention because of their extensive and significant applications in body-attachable healthcare monitoring, ultrasensitive electronic skins, and personal healthcare diagnosis. However, traditional conductive hydrogels inevitably face the challenge of long-term usage under room temperature and cold conditions, due to the lost water, elasticity, and conductivity at room temperature, and freezing at the water icing temperatures. It severely limits the applications in flexible electronics at room temperature or cold environment. Herein, we report a flexible, wearable, antifreezing, and healable epidermal sensor assembled from an antifreezing, long-lasting moist, and conductive organohydrogel. The nanocomposite organohydrogel is prepared from the conformal coating of functionalized reduced graphene oxide network by the hydrogel polymer networks consisting of poly(vinyl alcohol), phenylboronic acid grafted alginate, and polyacrylamide in the binary ethylene glycol (EG)/H2O solvent system. The obtained organohydrogel exhibits excellent temperature tolerance (-40 °C), long-lasting moisture (20 days), reliable self-healing ability, and can be assembled as wearable sensor for an accurate detection of both large and tiny human activities under extreme environment. Thus, it paves the way for the design of highly sensitive wearable epidermal sensors with reliable long-lasting moisture and excellent temperature tolerance for potential versatile applications in electronic skins, wearable healthcare monitoring, and human-machine interaction. SN - 1944-8252 UR - https://www.unboundmedicine.com/medline/citation/31625378/A_Wearable,_Anti-Freezing,_and_Healable_Epidermal_Sensor_Assembled_from_Long-Lastingly_Moist_Conductive_Nanocomposite_Organohydrogel L2 - https://dx.doi.org/10.1021/acsami.9b15412 DB - PRIME DP - Unbound Medicine ER -