Tags

Type your tag names separated by a space and hit enter

Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function.
Int J Mol Sci. 2019 Dec 03; 20(23)IJ

Abstract

This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I-V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes.

Authors+Show Affiliations

Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31816825

Citation

Xu, Meng, et al. "Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury Via Improving Mitochondrial Function." International Journal of Molecular Sciences, vol. 20, no. 23, 2019.
Xu M, Ma Q, Fan C, et al. Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function. Int J Mol Sci. 2019;20(23).
Xu, M., Ma, Q., Fan, C., Chen, X., Zhang, H., & Tang, M. (2019). Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20236086
Xu M, et al. Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury Via Improving Mitochondrial Function. Int J Mol Sci. 2019 Dec 3;20(23) PubMed PMID: 31816825.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function. AU - Xu,Meng, AU - Ma,Qing, AU - Fan,Chunlan, AU - Chen,Xue, AU - Zhang,Huiming, AU - Tang,Minke, Y1 - 2019/12/03/ PY - 2019/11/01/received PY - 2019/11/28/revised PY - 2019/11/29/accepted PY - 2019/12/11/entrez PY - 2019/12/11/pubmed PY - 2020/4/17/medline KW - astrocytes KW - ginsenoside Rb1 KW - ginsenoside Rg1 KW - oxidative phosphorylation KW - oxygen–glucose deprivation/reoxygenation KW - reactive oxygen species JF - International journal of molecular sciences JO - Int J Mol Sci VL - 20 IS - 23 N2 - This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I-V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes. SN - 1422-0067 UR - https://www.unboundmedicine.com/medline/citation/31816825/Ginsenosides_Rb1_and_Rg1_Protect_Primary_Cultured_Astrocytes_against_Oxygen_Glucose_Deprivation/Reoxygenation_Induced_Injury_via_Improving_Mitochondrial_Function_ L2 - https://www.mdpi.com/resolver?pii=ijms20236086 DB - PRIME DP - Unbound Medicine ER -