Tags

Type your tag names separated by a space and hit enter

Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics.
Molecules. 2019 Dec 13; 24(24)M

Abstract

BACKGROUND

In recent years, genetically modified technology has developed rapidly, and the potential impact of genetically modified foods on human health and the ecological environment has received increasing attention. The currently used methods for testing genetically modified foods are cumbersome, time-consuming, and expensive. This paper proposed a more efficient and convenient detection method.

METHODS

Near-infrared diffuse reflectance spectroscopy (NIRDRS) combined with multivariate calibration methods, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), were used for identification of different rice varieties and transgenic (Bt63)/non-transgenic rice. Spectral pretreatment methods, including Norris-Williams smooth (NWS), standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky-Golay 1st derivative (SG 1st-Der), were used for spectral noise reduction and effective information enhancement. Accuracy was used to evaluate the qualitative discriminant models.

RESULTS

The results showed that the SG 1st-Der pretreatment method, combined with the SVM, provided the optimal model to distinguish different rice varieties. The accuracy of the optimal model was 98.33%. For the discrimination model of transgenic/non-transgenic rice, the SNV-SVM model, MSC-SVM model, and SG 1st-Der-PLS-DA model all achieved good analysis results with the accuracy of 100%.

CONCLUSION

The results showed that portable NIR spectroscopy combined with chemometrics methods could be used to identify rice varieties and transgenic characteristics (Bt63) due to its fast, non-destructive, and accurate advantages.

Authors+Show Affiliations

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.Ganzhou Entry-Exit Inspection and Quarantine Bureau, Ganzhou 341000, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31847134

Citation

Hao, Yong, et al. "Identification of Rice Varieties and Transgenic Characteristics Based On Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics." Molecules (Basel, Switzerland), vol. 24, no. 24, 2019.
Hao Y, Geng P, Wu W, et al. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. Molecules. 2019;24(24).
Hao, Y., Geng, P., Wu, W., Wen, Q., & Rao, M. (2019). Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. Molecules (Basel, Switzerland), 24(24). https://doi.org/10.3390/molecules24244568
Hao Y, et al. Identification of Rice Varieties and Transgenic Characteristics Based On Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. Molecules. 2019 Dec 13;24(24) PubMed PMID: 31847134.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. AU - Hao,Yong, AU - Geng,Pei, AU - Wu,Wenhui, AU - Wen,Qinhua, AU - Rao,Min, Y1 - 2019/12/13/ PY - 2019/10/29/received PY - 2019/11/29/revised PY - 2019/12/10/accepted PY - 2019/12/19/entrez PY - 2019/12/19/pubmed PY - 2020/5/15/medline KW - partial least squares discriminant analysis (PLS-DA) KW - portable near-infrared reflectance spectroscopy (NIRDRS) KW - rice varieties KW - support vector machines (SVM) KW - transgenic rice JF - Molecules (Basel, Switzerland) JO - Molecules VL - 24 IS - 24 N2 - BACKGROUND: In recent years, genetically modified technology has developed rapidly, and the potential impact of genetically modified foods on human health and the ecological environment has received increasing attention. The currently used methods for testing genetically modified foods are cumbersome, time-consuming, and expensive. This paper proposed a more efficient and convenient detection method. METHODS: Near-infrared diffuse reflectance spectroscopy (NIRDRS) combined with multivariate calibration methods, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), were used for identification of different rice varieties and transgenic (Bt63)/non-transgenic rice. Spectral pretreatment methods, including Norris-Williams smooth (NWS), standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky-Golay 1st derivative (SG 1st-Der), were used for spectral noise reduction and effective information enhancement. Accuracy was used to evaluate the qualitative discriminant models. RESULTS: The results showed that the SG 1st-Der pretreatment method, combined with the SVM, provided the optimal model to distinguish different rice varieties. The accuracy of the optimal model was 98.33%. For the discrimination model of transgenic/non-transgenic rice, the SNV-SVM model, MSC-SVM model, and SG 1st-Der-PLS-DA model all achieved good analysis results with the accuracy of 100%. CONCLUSION: The results showed that portable NIR spectroscopy combined with chemometrics methods could be used to identify rice varieties and transgenic characteristics (Bt63) due to its fast, non-destructive, and accurate advantages. SN - 1420-3049 UR - https://www.unboundmedicine.com/medline/citation/31847134/Identification_of_Rice_Varieties_and_Transgenic_Characteristics_Based_on_Near_Infrared_Diffuse_Reflectance_Spectroscopy_and_Chemometrics_ L2 - https://www.mdpi.com/resolver?pii=molecules24244568 DB - PRIME DP - Unbound Medicine ER -