Tags

Type your tag names separated by a space and hit enter

Effect of Selenium Source and Level on Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens.
Foods. 2020 Jan 08; 9(1)F

Abstract

The objective of this study was to compare the effect of sodium selenite (SS) and selenium yeast (SY) on performance, egg quality, and selenium concentration in eggs and serum biochemical indices in laying hens. Seven hundred twenty healthy Roman laying hens (21 weeks old, 18 weeks in lay) with a similar laying rate (90.27% ± 1.05%) were randomly divided into 5 groups with 6 replicates of 24 hens each. Five diets were prepared as a 1+2×2 factorial arrangement with control and two sources of Se at two levels. Control diet (control) was prepared without adding exogenous selenium (analyzed basal Se content of 0.178 mg/kg). The other four diets were prepared with the control diet supplemented with SY or SS at 0.3 mg/kg (low; L) or 0.5 mg/kg (high; H) to give 5 diets designated as control, SY-L, SY-H, SS-L, and SS-H. The analyzed selenium content in the SY-L, SY-H, SS-L, and SS-H diets were 0.362, 0.572, 0.323, and 0.533 mg/kg respectively. The pre-trial period lasted 7 d, and the experimental period lasted 56 d (30 weeks old), during which the egg production, egg quality, and hen serum parameters were measured. Results showed that selenium source and level had no effect (P > 0.05) on average daily egg weight and feed conversion ratio (FCR). However, the laying rate was different at the L and H levels of supplementation, regardless of source, such that hens that were supplemented had a higher performance than that of the control, and the H level of supplementation lead to a higher laying rate than that of the L level (P < 0.05). There was a difference in average daily feed intake (ADFI) with an interaction in selenium source and level (P < 0.05), such that SS-L was higher than other selenium supplemented treatment or control. There were no significant differences in egg quality (P > 0.05); at the high level, SY had higher egg yolk selenium compared with SS. However, within SY, adding 0.5 mg/kg selenium led to higher egg yolk selenium than 0.3 mg/kg selenium (P < 0.05). Moreover, adding 0.3 mg/kg SY, 0.3 mg/kg, or 0.5 mg/kg SS to the basal diet had no significant effect on the selenium content in the egg (P > 0.05). There were no significant differences in serum biochemical indices among the five groups (P > 0.05). In conclusion, adding a high level of selenium in the diet of laying hens significantly increased egg production, and addition of a high level of selenium in the form of SY led to a higher deposition of selenium in the yolk than that of SS. These results indicate that adding 0.5 mg/kg of SY in the diet of laying hens would result in Se-enriched eggs.

Authors+Show Affiliations

.College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China..College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China..College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China..College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China..College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China..Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA..College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China. .Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31936314

Citation

Liu, Hu, et al. "Effect of Selenium Source and Level On Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens." Foods (Basel, Switzerland), vol. 9, no. 1, 2020.
Liu H, Yu Q, Fang C, et al. Effect of Selenium Source and Level on Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens. Foods (Basel, Switzerland). 2020;9(1).
Liu, H., Yu, Q., Fang, C., Chen, S., Tang, X., Ajuwon, K. M., & Fang, R. (2020). Effect of Selenium Source and Level on Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens. Foods (Basel, Switzerland), 9(1). https://doi.org/10.3390/foods9010068
Liu H, et al. Effect of Selenium Source and Level On Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens. Foods (Basel, Switzerland). 2020 Jan 8;9(1) PubMed PMID: 31936314.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effect of Selenium Source and Level on Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens. AU - Liu,Hu, AU - Yu,Qifang, AU - Fang,Chengkun, AU - Chen,Sijia, AU - Tang,Xiaopeng, AU - Ajuwon,Kolapo M, AU - Fang,Rejun, Y1 - 2020/01/08/ PY - 2019/12/04/received PY - 2020/01/04/revised PY - 2020/01/07/accepted PY - 2020/1/16/entrez PY - 2020/1/16/pubmed PY - 2020/1/16/medline KW - Roman laying hens KW - egg yolk selenium KW - laying rate KW - selenium yeast KW - sodium selenite JF - Foods (Basel, Switzerland) VL - 9 IS - 1 N2 - The objective of this study was to compare the effect of sodium selenite (SS) and selenium yeast (SY) on performance, egg quality, and selenium concentration in eggs and serum biochemical indices in laying hens. Seven hundred twenty healthy Roman laying hens (21 weeks old, 18 weeks in lay) with a similar laying rate (90.27% ± 1.05%) were randomly divided into 5 groups with 6 replicates of 24 hens each. Five diets were prepared as a 1+2×2 factorial arrangement with control and two sources of Se at two levels. Control diet (control) was prepared without adding exogenous selenium (analyzed basal Se content of 0.178 mg/kg). The other four diets were prepared with the control diet supplemented with SY or SS at 0.3 mg/kg (low; L) or 0.5 mg/kg (high; H) to give 5 diets designated as control, SY-L, SY-H, SS-L, and SS-H. The analyzed selenium content in the SY-L, SY-H, SS-L, and SS-H diets were 0.362, 0.572, 0.323, and 0.533 mg/kg respectively. The pre-trial period lasted 7 d, and the experimental period lasted 56 d (30 weeks old), during which the egg production, egg quality, and hen serum parameters were measured. Results showed that selenium source and level had no effect (P > 0.05) on average daily egg weight and feed conversion ratio (FCR). However, the laying rate was different at the L and H levels of supplementation, regardless of source, such that hens that were supplemented had a higher performance than that of the control, and the H level of supplementation lead to a higher laying rate than that of the L level (P < 0.05). There was a difference in average daily feed intake (ADFI) with an interaction in selenium source and level (P < 0.05), such that SS-L was higher than other selenium supplemented treatment or control. There were no significant differences in egg quality (P > 0.05); at the high level, SY had higher egg yolk selenium compared with SS. However, within SY, adding 0.5 mg/kg selenium led to higher egg yolk selenium than 0.3 mg/kg selenium (P < 0.05). Moreover, adding 0.3 mg/kg SY, 0.3 mg/kg, or 0.5 mg/kg SS to the basal diet had no significant effect on the selenium content in the egg (P > 0.05). There were no significant differences in serum biochemical indices among the five groups (P > 0.05). In conclusion, adding a high level of selenium in the diet of laying hens significantly increased egg production, and addition of a high level of selenium in the form of SY led to a higher deposition of selenium in the yolk than that of SS. These results indicate that adding 0.5 mg/kg of SY in the diet of laying hens would result in Se-enriched eggs. SN - 2304-8158 UR - https://www.unboundmedicine.com/medline/citation/31936314/Effect_of_Selenium_Source_and_Level_on_Performance_Egg_Quality_Egg_Selenium_Content_and_Serum_Biochemical_Parameters_in_Laying_Hens_ L2 - https://www.mdpi.com/resolver?pii=foods9010068 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.