Tags

Type your tag names separated by a space and hit enter

Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters through High-level Quantum VSCF/VCI Calculations.
J Phys Chem A. 2020 Feb 13; 124(6):1167-1175.JP

Abstract

The excess proton embedded in a three-dimensional cage structure of water molecules gives essential insight into its role in water and the water-air interface. Efforts in terms of the structural analysis and vibrational spectroscopy of the magic H3O+(H2O)20 cage-formed cluster have been made both experimentally and theoretically. However, theoretical interpretation of the experimental spectrum remains challenging and to date with no consideration of the contributions of different isomers. Here, we report highly accurate vibrational spectra of H3O+(H2O)20 considering three typical isomers using the fully quantum vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) approach and high-level, many-body ab initio-based potential and dipole moment surfaces. The calculated spectra of these isomers show similar prominent features of the surface hydronium ion in 1000-2400 cm-1 and water in 3000-3700 cm-1 regions. Very good agreement with the experimental spectrum has been reached for the first time, and we provide evidence for the possibility of coexistence of these three isomers below 10 K. The spectral contributions from different types of water molecules are also analyzed, which can guide future investigation to decode the heavily diffuse band in the water OH stretching region.

Authors+Show Affiliations

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States.Cherry L. Emerson Center for Scientific Computation and Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

31967827

Citation

Yu, Qi, and Joel M. Bowman. "Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters Through High-level Quantum VSCF/VCI Calculations." The Journal of Physical Chemistry. A, vol. 124, no. 6, 2020, pp. 1167-1175.
Yu Q, Bowman JM. Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters through High-level Quantum VSCF/VCI Calculations. J Phys Chem A. 2020;124(6):1167-1175.
Yu, Q., & Bowman, J. M. (2020). Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters through High-level Quantum VSCF/VCI Calculations. The Journal of Physical Chemistry. A, 124(6), 1167-1175. https://doi.org/10.1021/acs.jpca.9b11983
Yu Q, Bowman JM. Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters Through High-level Quantum VSCF/VCI Calculations. J Phys Chem A. 2020 Feb 13;124(6):1167-1175. PubMed PMID: 31967827.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Tracking Hydronium/Water Stretches in Magic H3O+(H2O)20 Clusters through High-level Quantum VSCF/VCI Calculations. AU - Yu,Qi, AU - Bowman,Joel M, Y1 - 2020/02/04/ PY - 2020/1/23/pubmed PY - 2020/1/23/medline PY - 2020/1/23/entrez SP - 1167 EP - 1175 JF - The journal of physical chemistry. A JO - J Phys Chem A VL - 124 IS - 6 N2 - The excess proton embedded in a three-dimensional cage structure of water molecules gives essential insight into its role in water and the water-air interface. Efforts in terms of the structural analysis and vibrational spectroscopy of the magic H3O+(H2O)20 cage-formed cluster have been made both experimentally and theoretically. However, theoretical interpretation of the experimental spectrum remains challenging and to date with no consideration of the contributions of different isomers. Here, we report highly accurate vibrational spectra of H3O+(H2O)20 considering three typical isomers using the fully quantum vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) approach and high-level, many-body ab initio-based potential and dipole moment surfaces. The calculated spectra of these isomers show similar prominent features of the surface hydronium ion in 1000-2400 cm-1 and water in 3000-3700 cm-1 regions. Very good agreement with the experimental spectrum has been reached for the first time, and we provide evidence for the possibility of coexistence of these three isomers below 10 K. The spectral contributions from different types of water molecules are also analyzed, which can guide future investigation to decode the heavily diffuse band in the water OH stretching region. SN - 1520-5215 UR - https://www.unboundmedicine.com/medline/citation/31967827/Tracking_Hydronium/Water_Stretches_in_Magic_H3O+(H2O)20_Clusters_through_High-level_Quantum_VSCF/VCI_Calculations L2 - https://dx.doi.org/10.1021/acs.jpca.9b11983 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.