Tags

Type your tag names separated by a space and hit enter

Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses.
PLoS Med. 2020 03; 17(3):e1003053.PM

Abstract

BACKGROUND

Fibre is promoted as part of a healthy dietary pattern and in diabetes management. We have considered the role of high-fibre diets on mortality and increasing fibre intake on glycaemic control and other cardiometabolic risk factors of adults with prediabetes or diabetes.

METHODS AND FINDINGS

We conducted a systematic review of published literature to identify prospective studies or controlled trials that have examined the effects of a higher fibre intake without additional dietary or other lifestyle modification in adults with prediabetes, gestational diabetes, type 1 diabetes, and type 2 diabetes. Meta-analyses were undertaken to determine the effects of higher fibre intake on all-cause and cardiovascular mortality and increasing fibre intake on glycaemic control and a range of cardiometabolic risk factors. For trials, meta regression analyses identified further variables that influenced the pooled findings. Dose response testing was undertaken; Grading of Recommendations Assessment, Development and Evaluation (GRADE) protocols were followed to assess the quality of evidence. Two multicountry cohorts of 8,300 adults with type 1 or type 2 diabetes followed on average for 8.8 years and 42 trials including 1,789 adults with prediabetes, type 1, or type 2 diabetes were identified. Prospective cohort data indicate an absolute reduction of 14 fewer deaths (95% confidence interval (CI) 4-19) per 1,000 participants over the study duration, when comparing a daily dietary fibre intake of 35 g with the average intake of 19 g, with a clear dose response relationship apparent. Increased fibre intakes reduced glycated haemoglobin (HbA1c; mean difference [MD] -2.00 mmol/mol, 95% CI -3.30 to -0.71 from 33 trials), fasting plasma glucose (MD -0.56 mmol/L, 95% CI -0.73 to -0.38 from 34 trials), insulin (standardised mean difference [SMD] -2.03, 95% CI -2.92 to -1.13 from 19 trials), homeostatic model assessment of insulin resistance (HOMA IR; MD -1.24 mg/dL, 95% CI -1.72 to -0.76 from 9 trials), total cholesterol (MD -0.34 mmol/L, 95% CI -0.46 to -0.22 from 27 trials), low-density lipoprotein (LDL) cholesterol (MD -0.17 mmol/L, 95% CI -0.27 to -0.08 from 21 trials), triglycerides (MD -0.16 mmol/L, 95% CI -0.23 to -0.09 from 28 trials), body weight (MD -0.56 kg, 95% CI -0.98 to -0.13 from 18 trials), Body Mass Index (BMI; MD -0.36, 95% CI -0·55 to -0·16 from 14 trials), and C-reactive protein (SMD -2.80, 95% CI -4.52 to -1.09 from 7 trials) when compared with lower fibre diets. All trial analyses were subject to high heterogeneity. Key variables beyond increasing fibre intake were the fibre intake at baseline, the global region where the trials were conducted, and participant inclusion criteria other than diabetes type. Potential limitations were the lack of prospective cohort data in non-European countries and the lack of long-term (12 months or greater) controlled trials of increasing fibre intakes in adults with diabetes.

CONCLUSIONS

Higher-fibre diets are an important component of diabetes management, resulting in improvements in measures of glycaemic control, blood lipids, body weight, and inflammation, as well as a reduction in premature mortality. These benefits were not confined to any fibre type or to any type of diabetes and were apparent across the range of intakes, although greater improvements in glycaemic control were observed for those moving from low to moderate or high intakes. Based on these findings, increasing daily fibre intake by 15 g or to 35 g might be a reasonable target that would be expected to reduce risk of premature mortality in adults with diabetes.

Authors+Show Affiliations

Department of Medicine, University of Otago, Dunedin, Otago, New Zealand. Edgar National Centre for Diabetes and Obesity Research, University of Otago, Dunedin, New Zealand.Department of Medicine, University of Otago, Dunedin, Otago, New Zealand. School of Physical Education, Sports, and Exercise Science, University of Otago, Dunedin, New Zealand.Department of Medicine, University of Otago, Dunedin, Otago, New Zealand. Edgar National Centre for Diabetes and Obesity Research, University of Otago, Dunedin, New Zealand.

Pub Type(s)

Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Systematic Review

Language

eng

PubMed ID

32142510

Citation

Reynolds, Andrew N., et al. "Dietary Fibre and Whole Grains in Diabetes Management: Systematic Review and Meta-analyses." PLoS Medicine, vol. 17, no. 3, 2020, pp. e1003053.
Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020;17(3):e1003053.
Reynolds, A. N., Akerman, A. P., & Mann, J. (2020). Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Medicine, 17(3), e1003053. https://doi.org/10.1371/journal.pmed.1003053
Reynolds AN, Akerman AP, Mann J. Dietary Fibre and Whole Grains in Diabetes Management: Systematic Review and Meta-analyses. PLoS Med. 2020;17(3):e1003053. PubMed PMID: 32142510.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. AU - Reynolds,Andrew N, AU - Akerman,Ashley P, AU - Mann,Jim, Y1 - 2020/03/06/ PY - 2019/06/03/received PY - 2020/02/03/accepted PY - 2020/3/7/entrez PY - 2020/3/7/pubmed PY - 2020/7/1/medline SP - e1003053 EP - e1003053 JF - PLoS medicine JO - PLoS Med VL - 17 IS - 3 N2 - BACKGROUND: Fibre is promoted as part of a healthy dietary pattern and in diabetes management. We have considered the role of high-fibre diets on mortality and increasing fibre intake on glycaemic control and other cardiometabolic risk factors of adults with prediabetes or diabetes. METHODS AND FINDINGS: We conducted a systematic review of published literature to identify prospective studies or controlled trials that have examined the effects of a higher fibre intake without additional dietary or other lifestyle modification in adults with prediabetes, gestational diabetes, type 1 diabetes, and type 2 diabetes. Meta-analyses were undertaken to determine the effects of higher fibre intake on all-cause and cardiovascular mortality and increasing fibre intake on glycaemic control and a range of cardiometabolic risk factors. For trials, meta regression analyses identified further variables that influenced the pooled findings. Dose response testing was undertaken; Grading of Recommendations Assessment, Development and Evaluation (GRADE) protocols were followed to assess the quality of evidence. Two multicountry cohorts of 8,300 adults with type 1 or type 2 diabetes followed on average for 8.8 years and 42 trials including 1,789 adults with prediabetes, type 1, or type 2 diabetes were identified. Prospective cohort data indicate an absolute reduction of 14 fewer deaths (95% confidence interval (CI) 4-19) per 1,000 participants over the study duration, when comparing a daily dietary fibre intake of 35 g with the average intake of 19 g, with a clear dose response relationship apparent. Increased fibre intakes reduced glycated haemoglobin (HbA1c; mean difference [MD] -2.00 mmol/mol, 95% CI -3.30 to -0.71 from 33 trials), fasting plasma glucose (MD -0.56 mmol/L, 95% CI -0.73 to -0.38 from 34 trials), insulin (standardised mean difference [SMD] -2.03, 95% CI -2.92 to -1.13 from 19 trials), homeostatic model assessment of insulin resistance (HOMA IR; MD -1.24 mg/dL, 95% CI -1.72 to -0.76 from 9 trials), total cholesterol (MD -0.34 mmol/L, 95% CI -0.46 to -0.22 from 27 trials), low-density lipoprotein (LDL) cholesterol (MD -0.17 mmol/L, 95% CI -0.27 to -0.08 from 21 trials), triglycerides (MD -0.16 mmol/L, 95% CI -0.23 to -0.09 from 28 trials), body weight (MD -0.56 kg, 95% CI -0.98 to -0.13 from 18 trials), Body Mass Index (BMI; MD -0.36, 95% CI -0·55 to -0·16 from 14 trials), and C-reactive protein (SMD -2.80, 95% CI -4.52 to -1.09 from 7 trials) when compared with lower fibre diets. All trial analyses were subject to high heterogeneity. Key variables beyond increasing fibre intake were the fibre intake at baseline, the global region where the trials were conducted, and participant inclusion criteria other than diabetes type. Potential limitations were the lack of prospective cohort data in non-European countries and the lack of long-term (12 months or greater) controlled trials of increasing fibre intakes in adults with diabetes. CONCLUSIONS: Higher-fibre diets are an important component of diabetes management, resulting in improvements in measures of glycaemic control, blood lipids, body weight, and inflammation, as well as a reduction in premature mortality. These benefits were not confined to any fibre type or to any type of diabetes and were apparent across the range of intakes, although greater improvements in glycaemic control were observed for those moving from low to moderate or high intakes. Based on these findings, increasing daily fibre intake by 15 g or to 35 g might be a reasonable target that would be expected to reduce risk of premature mortality in adults with diabetes. SN - 1549-1676 UR - https://www.unboundmedicine.com/medline/citation/32142510/Dietary_fibre_and_whole_grains_in_diabetes_management:_Systematic_review_and_meta_analyses_ L2 - https://dx.plos.org/10.1371/journal.pmed.1003053 DB - PRIME DP - Unbound Medicine ER -