Tags

Type your tag names separated by a space and hit enter

Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance.
BMC Plant Biol. 2020 Apr 15; 20(1):163.BP

Abstract

BACKGROUND

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously.

RESULTS

This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations: T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents: common wheat line 7182 and durum wheat line Trs-372.

CONCLUSIONS

TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations.

Authors+Show Affiliations

Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.USDA, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS, 66506, USA.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China. zhjx881@163.com.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

32293283

Citation

Li, Jiachuang, et al. "Molecular Cytogenetic Characterization of a Novel wheat-Psathyrostachys Huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL Dual Translocation Line With Powdery Mildew Resistance." BMC Plant Biology, vol. 20, no. 1, 2020, p. 163.
Li J, Zhao L, Cheng X, et al. Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. BMC Plant Biol. 2020;20(1):163.
Li, J., Zhao, L., Cheng, X., Bai, G., Li, M., Wu, J., Yang, Q., Chen, X., Yang, Z., & Zhao, J. (2020). Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. BMC Plant Biology, 20(1), 163. https://doi.org/10.1186/s12870-020-02366-8
Li J, et al. Molecular Cytogenetic Characterization of a Novel wheat-Psathyrostachys Huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL Dual Translocation Line With Powdery Mildew Resistance. BMC Plant Biol. 2020 Apr 15;20(1):163. PubMed PMID: 32293283.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. AU - Li,Jiachuang, AU - Zhao,Li, AU - Cheng,Xueni, AU - Bai,Guihua, AU - Li,Mao, AU - Wu,Jun, AU - Yang,Qunhui, AU - Chen,Xinhong, AU - Yang,Zujun, AU - Zhao,Jixin, Y1 - 2020/04/15/ PY - 2019/11/02/received PY - 2020/03/26/accepted PY - 2020/4/16/entrez PY - 2020/4/16/pubmed PY - 2020/12/22/medline KW - Dual translocation line KW - In situ hybridization KW - Psathyrostachys huashanica KW - Single nucleotide polymorphism array KW - Wheat powdery mildew SP - 163 EP - 163 JF - BMC plant biology JO - BMC Plant Biol VL - 20 IS - 1 N2 - BACKGROUND: Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously. RESULTS: This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations: T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents: common wheat line 7182 and durum wheat line Trs-372. CONCLUSIONS: TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations. SN - 1471-2229 UR - https://www.unboundmedicine.com/medline/citation/32293283/Molecular_cytogenetic_characterization_of_a_novel_wheat_Psathyrostachys_huashanica_Keng_T3DS_5NsL•5NsS_and_T5DL_3DS•3DL_dual_translocation_line_with_powdery_mildew_resistance_ DB - PRIME DP - Unbound Medicine ER -