Tags

Type your tag names separated by a space and hit enter

Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes.
Med Hypotheses. 2020 Nov; 144:109865.MH

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronaviridae that causes respiratory disorders. After infection, large amounts of inflammatory cytokines are secreted, known as the cytokine storm. These cytokines can cause pulmonary damage induced by inflammation resulting in acute respiratory distress syndrome (ARDS), and even death. One of the therapeutic approaches for treatment of ARDS is a mesenchymal stem cell (MSC). MSCs suppress inflammation and reduce lung injury through their immunomodulatory properties. MSCs also have the potential to prevent apoptosis of the lung cells and regenerate them. But our suggestion is using MSCs-derived exosomes. Because these exosomes apply the same immunomodulatory and tissue repair effects of MSCs and they don't have problems associated to cell maintenance and injections. For investigation the hypothesis, MSCs should be isolated from tissues and characterized. Then, the exosomes should be isolated from the supernatants and characterized. These exosomes should be injected into a transgenic animal for COVID-19. In the final section, lung function assessment, histological examination, micro-CT, differential leukocyte, viral load analysis, cytokine assay, and CRP level analysis can be investigated. COVID-19 treatment is currently focused on supportive therapies and no vaccine has been developed for it. So, numerous researches are needed to find potential therapies. Since the pathogenesis of this disease was identified in previous studies and can cause lung injury with ARDS, investigation of the therapeutic approaches that can suppress inflammation, cytokine storm and ARDS can be helpful in finding a novel therapeutic approach for this disease.

Authors+Show Affiliations

Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.Department of immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address: smmhashemi@sbmu.ac.ir.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

32562911

Citation

Taghavi-Farahabadi, Mahsa, et al. "Hypothesis for the Management and Treatment of the COVID-19-induced Acute Respiratory Distress Syndrome and Lung Injury Using Mesenchymal Stem Cell-derived Exosomes." Medical Hypotheses, vol. 144, 2020, p. 109865.
Taghavi-Farahabadi M, Mahmoudi M, Soudi S, et al. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses. 2020;144:109865.
Taghavi-Farahabadi, M., Mahmoudi, M., Soudi, S., & Hashemi, S. M. (2020). Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Medical Hypotheses, 144, 109865. https://doi.org/10.1016/j.mehy.2020.109865
Taghavi-Farahabadi M, et al. Hypothesis for the Management and Treatment of the COVID-19-induced Acute Respiratory Distress Syndrome and Lung Injury Using Mesenchymal Stem Cell-derived Exosomes. Med Hypotheses. 2020;144:109865. PubMed PMID: 32562911.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. AU - Taghavi-Farahabadi,Mahsa, AU - Mahmoudi,Mohammad, AU - Soudi,Sara, AU - Hashemi,Seyed Mahmoud, Y1 - 2020/05/22/ PY - 2020/05/03/received PY - 2020/05/21/accepted PY - 2020/6/21/pubmed PY - 2020/12/23/medline PY - 2020/6/21/entrez KW - Acute respiratory distress syndrome KW - COVID-19 KW - Exosomes KW - Mesenchymal stem cell KW - SARS-CoV-2 SP - 109865 EP - 109865 JF - Medical hypotheses JO - Med Hypotheses VL - 144 N2 - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronaviridae that causes respiratory disorders. After infection, large amounts of inflammatory cytokines are secreted, known as the cytokine storm. These cytokines can cause pulmonary damage induced by inflammation resulting in acute respiratory distress syndrome (ARDS), and even death. One of the therapeutic approaches for treatment of ARDS is a mesenchymal stem cell (MSC). MSCs suppress inflammation and reduce lung injury through their immunomodulatory properties. MSCs also have the potential to prevent apoptosis of the lung cells and regenerate them. But our suggestion is using MSCs-derived exosomes. Because these exosomes apply the same immunomodulatory and tissue repair effects of MSCs and they don't have problems associated to cell maintenance and injections. For investigation the hypothesis, MSCs should be isolated from tissues and characterized. Then, the exosomes should be isolated from the supernatants and characterized. These exosomes should be injected into a transgenic animal for COVID-19. In the final section, lung function assessment, histological examination, micro-CT, differential leukocyte, viral load analysis, cytokine assay, and CRP level analysis can be investigated. COVID-19 treatment is currently focused on supportive therapies and no vaccine has been developed for it. So, numerous researches are needed to find potential therapies. Since the pathogenesis of this disease was identified in previous studies and can cause lung injury with ARDS, investigation of the therapeutic approaches that can suppress inflammation, cytokine storm and ARDS can be helpful in finding a novel therapeutic approach for this disease. SN - 1532-2777 UR - https://www.unboundmedicine.com/medline/citation/32562911/Hypothesis_for_the_management_and_treatment_of_the_COVID_19_induced_acute_respiratory_distress_syndrome_and_lung_injury_using_mesenchymal_stem_cell_derived_exosomes_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0306-9877(20)31120-8 DB - PRIME DP - Unbound Medicine ER -