Tags

Type your tag names separated by a space and hit enter

Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers.
J Vis Exp. 2020 Jun 10JV

Abstract

It has been more than a decade since the first functional magnetic resonance imaging (fMRI)-based neurofeedback approach was successfully implemented. Since then, various studies have demonstrated that participants can learn to voluntarily control a circumscribed brain region. Consequently, real-time fMRI (rtfMRI) provided a novel opportunity to study modifications of behavior due to manipulation of brain activity. Hence, reports of rtfMRI applications to train self-regulation of brain activity and the concomitant modifications in behavioral and clinical conditions such as neurological and psychiatric disorders [e.g., schizophrenia, obsessive compulsive Disorder (OCD), stroke] have rapidly increased. Neuroimaging studies in addiction research have shown that the anterior cingulate cortex, orbitofrontal cortex, and insular cortex are activated during the presentation of drug-associated cues. Also, activity in both left and right insular cortices have been shown to be highly correlated with drug urges when participants are exposed to craving-eliciting cues. Hence, the bilateral insula is of particular importance in researching drug urges and addiction due to its role in the representation of bodily (interoceptive) states. This study explores the use of rtfMRI neurofeedback for the reduction in blood oxygen-level dependent (BOLD) activity in bilateral insular cortices of nicotine-addicted participants. The study also tests if there are neurofeedback training-associated modifications in the implicit attitudes of participants towards nicotine-craving cues and explicit-craving behavior.

Authors+Show Affiliations

Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile; Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile; morana@uc.cl.Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile; Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile; sruiz@uc.cl.Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile; Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile.Department of Psychiatry and Psychotherapy, University of Tübingen.Department of Psychiatry and Psychotherapy, University of Tübingen.Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imaágenes, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo.Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imaágenes, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo; División de Neurociencia, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo.Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imaágenes, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo.Department of Psychiatry and Psychotherapy, University of Tübingen.Department of Psychiatry and Psychotherapy, University of Tübingen.Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile; Institute di Ricovero e Cura a Carattere Scientifico; Wyss Center for Bio and Neuroengineering.Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile; Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile; Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile; rasitaram@uc.cl.

Pub Type(s)

Journal Article
Video-Audio Media

Language

eng

PubMed ID

32597838

Citation

Rana, Mohit, et al. "Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers." Journal of Visualized Experiments : JoVE, 2020.
Rana M, Ruiz S, Corzo AS, et al. Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers. J Vis Exp. 2020.
Rana, M., Ruiz, S., Corzo, A. S., Muehleck, A., Eck, S., Salinas, C., Zamorano, F., Silva, C., Rea, M., Batra, A., Birbaumer, N., & Sitaram, R. (2020). Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers. Journal of Visualized Experiments : JoVE, (160). https://doi.org/10.3791/59441
Rana M, et al. Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers. J Vis Exp. 2020 Jun 10;(160) PubMed PMID: 32597838.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers. AU - Rana,Mohit, AU - Ruiz,Sergio, AU - Corzo,Andrea Sánchez, AU - Muehleck,Axel, AU - Eck,Sandra, AU - Salinas,César, AU - Zamorano,Francisco, AU - Silva,Claudio, AU - Rea,Massimiliano, AU - Batra,Anil, AU - Birbaumer,Niels, AU - Sitaram,Ranganatha, Y1 - 2020/06/10/ PY - 2020/6/30/entrez JF - Journal of visualized experiments : JoVE JO - J Vis Exp IS - 160 N2 - It has been more than a decade since the first functional magnetic resonance imaging (fMRI)-based neurofeedback approach was successfully implemented. Since then, various studies have demonstrated that participants can learn to voluntarily control a circumscribed brain region. Consequently, real-time fMRI (rtfMRI) provided a novel opportunity to study modifications of behavior due to manipulation of brain activity. Hence, reports of rtfMRI applications to train self-regulation of brain activity and the concomitant modifications in behavioral and clinical conditions such as neurological and psychiatric disorders [e.g., schizophrenia, obsessive compulsive Disorder (OCD), stroke] have rapidly increased. Neuroimaging studies in addiction research have shown that the anterior cingulate cortex, orbitofrontal cortex, and insular cortex are activated during the presentation of drug-associated cues. Also, activity in both left and right insular cortices have been shown to be highly correlated with drug urges when participants are exposed to craving-eliciting cues. Hence, the bilateral insula is of particular importance in researching drug urges and addiction due to its role in the representation of bodily (interoceptive) states. This study explores the use of rtfMRI neurofeedback for the reduction in blood oxygen-level dependent (BOLD) activity in bilateral insular cortices of nicotine-addicted participants. The study also tests if there are neurofeedback training-associated modifications in the implicit attitudes of participants towards nicotine-craving cues and explicit-craving behavior. SN - 1940-087X UR - https://www.unboundmedicine.com/medline/citation/32597838/Use_of_Real-Time_Functional_Magnetic_Resonance_Imaging-Based_Neurofeedback_to_Downregulate_Insular_Cortex_in_Nicotine-Addicted_Smokers L2 - https://doi.org/10.3791/59441 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.