Tags

Type your tag names separated by a space and hit enter

Microvesicles from Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis.
Stem Cells Int. 2020; 2020:1289380.SC

Abstract

Endothelial progenitor cells (EPCs) and mesenchymal stem/stromal cells (MSCs) are associated with maintaining tissue homeostasis and tissue repair. Both types of cells contribute to tissue regeneration through the secretion of trophic factors (alone or in the form of microvesicles). This study investigated the isolation and biological properties of microvesicles (MVs) derived from human immortalized MSC line HATMSC1 of adipose tissue origin and EPC line. The human immortalized cell line derived from the adipose tissue of a patient with venous stasis was established in our laboratory using the hTERT and pSV402 plasmids. The human EPC line originating from cord blood (HEPC-CB.1) was established in our previous studies. Microvesicles were isolated through a sequence of centrifugations. Analysis of the protein content of both populations of microvesicles, using the Membrane-Based Antibody Array and Milliplex ELISA showed that isolated microvesicles transported growth factors and pro- and antiangiogenic factors. Analysis of the miRNA content of isolated microvesicles revealed the presence of proangiogenic miRNA (miR-126, miR-296, miR-378, and miR-210) and low expression of antiangiogenic miRNA (miR-221, miR-222, and miR-92a) using real-time RT-PCR with the TaqMan technique. The isolated microvesicles were assessed for their effect on the proliferation and proangiogenic properties of cells involved in tissue repair. It was shown that both HEPC-CB.1- and HATMSC1-derived microvesicles increased the proliferation of human endothelial cells of dermal origin and that this effect was dose-dependent. In contrast, microvesicles had a limited impact on the proliferation of fibroblasts and keratinocytes. Both types of microvesicles improved the proangiogenic properties of human dermal endothelial cells, and this effect was also dose-dependent, as shown in the Matrigel assay. These results confirm the hypothesis that microvesicles of HEPC-CB.1 and HATMSC1 origin carry proteins and miRNAs that support and facilitate angiogenic processes that are important for cutaneous tissue regeneration.

Authors+Show Affiliations

Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

32612661

Citation

Krawczenko, Agnieszka, et al. "Microvesicles From Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis." Stem Cells International, vol. 2020, 2020, p. 1289380.
Krawczenko A, Bielawska-Pohl A, Paprocka M, et al. Microvesicles from Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis. Stem Cells Int. 2020;2020:1289380.
Krawczenko, A., Bielawska-Pohl, A., Paprocka, M., Kraskiewicz, H., Szyposzynska, A., Wojdat, E., & Klimczak, A. (2020). Microvesicles from Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis. Stem Cells International, 2020, 1289380. https://doi.org/10.1155/2020/1289380
Krawczenko A, et al. Microvesicles From Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis. Stem Cells Int. 2020;2020:1289380. PubMed PMID: 32612661.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Microvesicles from Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis. AU - Krawczenko,Agnieszka, AU - Bielawska-Pohl,Aleksandra, AU - Paprocka,Maria, AU - Kraskiewicz,Honorata, AU - Szyposzynska,Agnieszka, AU - Wojdat,Elżbieta, AU - Klimczak,Aleksandra, Y1 - 2020/06/15/ PY - 2019/11/14/received PY - 2020/02/14/revised PY - 2020/03/26/accepted PY - 2020/7/3/entrez PY - 2020/7/3/pubmed PY - 2020/7/3/medline SP - 1289380 EP - 1289380 JF - Stem cells international JO - Stem Cells Int VL - 2020 N2 - Endothelial progenitor cells (EPCs) and mesenchymal stem/stromal cells (MSCs) are associated with maintaining tissue homeostasis and tissue repair. Both types of cells contribute to tissue regeneration through the secretion of trophic factors (alone or in the form of microvesicles). This study investigated the isolation and biological properties of microvesicles (MVs) derived from human immortalized MSC line HATMSC1 of adipose tissue origin and EPC line. The human immortalized cell line derived from the adipose tissue of a patient with venous stasis was established in our laboratory using the hTERT and pSV402 plasmids. The human EPC line originating from cord blood (HEPC-CB.1) was established in our previous studies. Microvesicles were isolated through a sequence of centrifugations. Analysis of the protein content of both populations of microvesicles, using the Membrane-Based Antibody Array and Milliplex ELISA showed that isolated microvesicles transported growth factors and pro- and antiangiogenic factors. Analysis of the miRNA content of isolated microvesicles revealed the presence of proangiogenic miRNA (miR-126, miR-296, miR-378, and miR-210) and low expression of antiangiogenic miRNA (miR-221, miR-222, and miR-92a) using real-time RT-PCR with the TaqMan technique. The isolated microvesicles were assessed for their effect on the proliferation and proangiogenic properties of cells involved in tissue repair. It was shown that both HEPC-CB.1- and HATMSC1-derived microvesicles increased the proliferation of human endothelial cells of dermal origin and that this effect was dose-dependent. In contrast, microvesicles had a limited impact on the proliferation of fibroblasts and keratinocytes. Both types of microvesicles improved the proangiogenic properties of human dermal endothelial cells, and this effect was also dose-dependent, as shown in the Matrigel assay. These results confirm the hypothesis that microvesicles of HEPC-CB.1 and HATMSC1 origin carry proteins and miRNAs that support and facilitate angiogenic processes that are important for cutaneous tissue regeneration. SN - 1687-966X UR - https://www.unboundmedicine.com/medline/citation/32612661/Microvesicles_from_Human_Immortalized_Cell_Lines_of_Endothelial_Progenitor_Cells_and_Mesenchymal_Stem/Stromal_Cells_of_Adipose_Tissue_Origin_as_Carriers_of_Bioactive_Factors_Facilitating_Angiogenesis L2 - https://doi.org/10.1155/2020/1289380 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.