Tags

Type your tag names separated by a space and hit enter

Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors against the Intractable Xanthomonas oryzae pv. oryzae Infections in Rice.
J Agric Food Chem. 2020 Jul 22 [Online ahead of print]JA

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) is an offensive phytopathogen that can invade a wide range of plant hosts to develop bacterial diseases, including the well-known rice bacterial leaf blight. However, few agrochemicals have been identified to effectively prevent and eliminate Xoo-induced diseases. Thus, designing novel antibacterial compounds on the basis of the potential targets from Xoo may lead to the discovery of highly efficient and innovative anti-Xoo agents. Filamentous temperature-sensitive protein Z (FtsZ), an important functional protein in the progression of cell division, has been widely reported and exploited as a target for creating antibacterial drugs in the field of medicine. Therefore, the fabrication of innovative frameworks targeting XooFtsZ may be an effective method for managing bacterial leaf blight diseases via blocking the binary division and reproduction of Xoo. As such, a series of novel N-(cinnamoyl)-N'-(substituted)acryloyl hydrazide derivatives containing pyridinium moieties were designed, and the anti-Xoo activity was determined. The bioassay results showed that compound A7 had excellent anti-Xoo activity (EC50 = 0.99 mg L-1) in vitro and distinct curative activity (63.2% at 200 mg L-1) in vivo. Further studies revealed that these designed compounds were XooFtsZ inhibitors, validating by the reduced GTPase activity of recombinant XooFtsZ, the nonfilamentous XooFtsZ assembly observed in the TEM images, and the prolonged Xoo cells from the fluorescence patterns. Computational docking studies showed that compound A7 had strong interactions with ASN34, GLN193, and GLN197 residues located in the α helix regions of XooFtsZ. The present study demonstrates the developed FtsZ inhibitors can serve as agents to control Xoo-induced infections.

Authors+Show Affiliations

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.College of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China. College of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

32649185

Citation

Zhou, Xiang, et al. "Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors Against the Intractable Xanthomonas Oryzae Pv. Oryzae Infections in Rice." Journal of Agricultural and Food Chemistry, 2020.
Zhou X, Feng YM, Qi PY, et al. Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors against the Intractable Xanthomonas oryzae pv. oryzae Infections in Rice. J Agric Food Chem. 2020.
Zhou, X., Feng, Y. M., Qi, P. Y., Shao, W. B., Wu, Z. B., Liu, L. W., Wang, Y., Ma, H. D., Wang, P. Y., Li, Z., & Yang, S. (2020). Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors against the Intractable Xanthomonas oryzae pv. oryzae Infections in Rice. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c01565
Zhou X, et al. Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors Against the Intractable Xanthomonas Oryzae Pv. Oryzae Infections in Rice. J Agric Food Chem. 2020 Jul 22; PubMed PMID: 32649185.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Synthesis and Docking Study of N-(Cinnamoyl)-N'-(substituted)acryloyl Hydrazide Derivatives Containing Pyridinium Moieties as a Novel Class of Filamentous Temperature-Sensitive Protein Z Inhibitors against the Intractable Xanthomonas oryzae pv. oryzae Infections in Rice. AU - Zhou,Xiang, AU - Feng,Yu-Mei, AU - Qi,Pu-Ying, AU - Shao,Wu-Bin, AU - Wu,Zhi-Bing, AU - Liu,Li-Wei, AU - Wang,Yi, AU - Ma,Hao-Dong, AU - Wang,Pei-Yi, AU - Li,Zhong, AU - Yang,Song, Y1 - 2020/07/22/ PY - 2020/7/11/pubmed PY - 2020/7/11/medline PY - 2020/7/11/entrez KW - FtsZ inhibitor KW - antibacterial assay KW - diacylhydrazine derivatives KW - rice bacterial blight JF - Journal of agricultural and food chemistry JO - J. Agric. Food Chem. N2 - Xanthomonas oryzae pv. oryzae (Xoo) is an offensive phytopathogen that can invade a wide range of plant hosts to develop bacterial diseases, including the well-known rice bacterial leaf blight. However, few agrochemicals have been identified to effectively prevent and eliminate Xoo-induced diseases. Thus, designing novel antibacterial compounds on the basis of the potential targets from Xoo may lead to the discovery of highly efficient and innovative anti-Xoo agents. Filamentous temperature-sensitive protein Z (FtsZ), an important functional protein in the progression of cell division, has been widely reported and exploited as a target for creating antibacterial drugs in the field of medicine. Therefore, the fabrication of innovative frameworks targeting XooFtsZ may be an effective method for managing bacterial leaf blight diseases via blocking the binary division and reproduction of Xoo. As such, a series of novel N-(cinnamoyl)-N'-(substituted)acryloyl hydrazide derivatives containing pyridinium moieties were designed, and the anti-Xoo activity was determined. The bioassay results showed that compound A7 had excellent anti-Xoo activity (EC50 = 0.99 mg L-1) in vitro and distinct curative activity (63.2% at 200 mg L-1) in vivo. Further studies revealed that these designed compounds were XooFtsZ inhibitors, validating by the reduced GTPase activity of recombinant XooFtsZ, the nonfilamentous XooFtsZ assembly observed in the TEM images, and the prolonged Xoo cells from the fluorescence patterns. Computational docking studies showed that compound A7 had strong interactions with ASN34, GLN193, and GLN197 residues located in the α helix regions of XooFtsZ. The present study demonstrates the developed FtsZ inhibitors can serve as agents to control Xoo-induced infections. SN - 1520-5118 UR - https://www.unboundmedicine.com/medline/citation/32649185/Synthesis_and_Docking_Study_of_N-(Cinnamoyl)-N'-(Substituted)acryloyl_Hydrazide_Derivatives_Containing_Pyridinium_Moieties_as_a_Novel_Class_of_FtsZ_Inhibitors_against_the_Intractable_Xanthomonas_oryzae_pv._oryzae_Infections_in_Rice L2 - https://doi.org/10.1021/acs.jafc.0c01565 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.