Tags

Type your tag names separated by a space and hit enter

Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study.
J Biomol Struct Dyn. 2020 Aug 27 [Online ahead of print]JB

Abstract

COVID-19 (Coronavirus disease 2019) is a transmissible disease initiated and propagated through a new virus strain SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) since 31st December 2019 in Wuhan city of China and the infection has outspread globally influencing millions of people. Here, an attempt was made to recognize natural phytochemicals from medicinal plants, in order to reutilize them against COVID-19 by the virtue of molecular docking and molecular dynamics (MD) simulation study. Molecular docking study showed six probable inhibitors against SARS-CoV-2 Mpro (Main protease), two from Withania somnifera (Ashwagandha) (Withanoside V [10.32 kcal/mol] and Somniferine [9.62 kcal/mol]), one from Tinospora cordifolia (Giloy) (Tinocordiside [8.10 kcal/mol]) and three from Ocimum sanctum (Tulsi) (Vicenin [8.97 kcal/mol], Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte [8.55 kcal/mol] and Ursolic acid [8.52 kcal/mol]). ADMET profile prediction showed that the best docked phytochemicals from present work were safe and possesses drug-like properties. Further MD simulation study was performed to assess the constancy of docked complexes and found stable. Hence from present study it could be suggested that active phytochemicals from medicinal plants could potentially inhibit Mpro of SARS-CoV-2 and further equip the management strategy against COVID-19-a global contagion. Highlights Holistic approach of Ayurvedic medicinal plants to avenge against COVID-19 pandemic. Active phytoconstituents of Ayurvedic medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) predicted to significantly hinder main protease (Mpro or 3Clpro) of SARS-CoV-2. Through molecular docking and molecular dynamic simulation study, Withanoside V, Somniferine, Tinocordiside, Vicenin, Ursolic acid and Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte were anticipated to impede the activity of SARS-CoV-2 Mpro. Drug-likeness and ADMET profile prediction of best docked compounds from present study were predicted to be safe, drug-like compounds with no toxicity. Communicated by Ramaswamy H. Sarma.

Authors+Show Affiliations

Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamilnadu, India.Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamilnadu, India.Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

32851919

Citation

Shree, Priya, et al. "Targeting COVID-19 (SARS-CoV-2) Main Protease Through Active Phytochemicals of Ayurvedic Medicinal Plants - Withania Somnifera (Ashwagandha), Tinospora Cordifolia (Giloy) and Ocimum Sanctum (Tulsi) - a Molecular Docking Study." Journal of Biomolecular Structure & Dynamics, 2020, pp. 1-14.
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn. 2020.
Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2020). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. Journal of Biomolecular Structure & Dynamics, 1-14. https://doi.org/10.1080/07391102.2020.1810778
Shree P, et al. Targeting COVID-19 (SARS-CoV-2) Main Protease Through Active Phytochemicals of Ayurvedic Medicinal Plants - Withania Somnifera (Ashwagandha), Tinospora Cordifolia (Giloy) and Ocimum Sanctum (Tulsi) - a Molecular Docking Study. J Biomol Struct Dyn. 2020 Aug 27;1-14. PubMed PMID: 32851919.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. AU - Shree,Priya, AU - Mishra,Priyanka, AU - Selvaraj,Chandrabose, AU - Singh,Sanjeev Kumar, AU - Chaube,Radha, AU - Garg,Neha, AU - Tripathi,Yamini Bhusan, Y1 - 2020/08/27/ PY - 2020/8/28/entrez PY - 2020/8/28/pubmed PY - 2020/8/28/medline KW - ADMET KW - COVID-19 (SARS-CoV-2) Mpro KW - MD simulation KW - ayurveda KW - drug-likeness KW - medicinal plants KW - molecular docking SP - 1 EP - 14 JF - Journal of biomolecular structure & dynamics JO - J. Biomol. Struct. Dyn. N2 - COVID-19 (Coronavirus disease 2019) is a transmissible disease initiated and propagated through a new virus strain SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) since 31st December 2019 in Wuhan city of China and the infection has outspread globally influencing millions of people. Here, an attempt was made to recognize natural phytochemicals from medicinal plants, in order to reutilize them against COVID-19 by the virtue of molecular docking and molecular dynamics (MD) simulation study. Molecular docking study showed six probable inhibitors against SARS-CoV-2 Mpro (Main protease), two from Withania somnifera (Ashwagandha) (Withanoside V [10.32 kcal/mol] and Somniferine [9.62 kcal/mol]), one from Tinospora cordifolia (Giloy) (Tinocordiside [8.10 kcal/mol]) and three from Ocimum sanctum (Tulsi) (Vicenin [8.97 kcal/mol], Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte [8.55 kcal/mol] and Ursolic acid [8.52 kcal/mol]). ADMET profile prediction showed that the best docked phytochemicals from present work were safe and possesses drug-like properties. Further MD simulation study was performed to assess the constancy of docked complexes and found stable. Hence from present study it could be suggested that active phytochemicals from medicinal plants could potentially inhibit Mpro of SARS-CoV-2 and further equip the management strategy against COVID-19-a global contagion. Highlights Holistic approach of Ayurvedic medicinal plants to avenge against COVID-19 pandemic. Active phytoconstituents of Ayurvedic medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) predicted to significantly hinder main protease (Mpro or 3Clpro) of SARS-CoV-2. Through molecular docking and molecular dynamic simulation study, Withanoside V, Somniferine, Tinocordiside, Vicenin, Ursolic acid and Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte were anticipated to impede the activity of SARS-CoV-2 Mpro. Drug-likeness and ADMET profile prediction of best docked compounds from present study were predicted to be safe, drug-like compounds with no toxicity. Communicated by Ramaswamy H. Sarma. SN - 1538-0254 UR - https://www.unboundmedicine.com/medline/citation/32851919/Targeting_COVID_19__SARS_CoV_2__main_protease_through_active_phytochemicals_of_ayurvedic_medicinal_plants___Withania_somnifera__Ashwagandha__Tinospora_cordifolia__Giloy__and_Ocimum_sanctum__Tulsi____a_molecular_docking_study_ L2 - http://www.tandfonline.com/doi/full/10.1080/07391102.2020.1810778 DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.