Tags

Type your tag names separated by a space and hit enter

Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation.
Invest Ophthalmol Vis Sci. 2020 10 01; 61(12):15.IO

Abstract

Purpose

Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma.

Methods

Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels.

Results

Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level.

Conclusions

These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.

Authors+Show Affiliations

Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States. Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States.Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States. Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States.Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States. Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States.

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

33064129

Citation

Tao, Xiaofeng, et al. "Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation." Investigative Ophthalmology & Visual Science, vol. 61, no. 12, 2020, p. 15.
Tao X, Sabharwal J, Wu SM, et al. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci. 2020;61(12):15.
Tao, X., Sabharwal, J., Wu, S. M., & Frankfort, B. J. (2020). Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Investigative Ophthalmology & Visual Science, 61(12), 15. https://doi.org/10.1167/iovs.61.12.15
Tao X, et al. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci. 2020 10 1;61(12):15. PubMed PMID: 33064129.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. AU - Tao,Xiaofeng, AU - Sabharwal,Jasdeep, AU - Wu,Samuel M, AU - Frankfort,Benjamin J, PY - 2020/10/16/entrez PY - 2020/10/17/pubmed PY - 2021/5/8/medline SP - 15 EP - 15 JF - Investigative ophthalmology & visual science JO - Invest Ophthalmol Vis Sci VL - 61 IS - 12 N2 - Purpose: Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods: Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results: Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions: These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial. SN - 1552-5783 UR - https://www.unboundmedicine.com/medline/citation/33064129/Intraocular_Pressure_Elevation_Compromises_Retinal_Ganglion_Cell_Light_Adaptation_ L2 - https://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.61.12.15 DB - PRIME DP - Unbound Medicine ER -