Tags

Type your tag names separated by a space and hit enter

Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors.
Plant Commun. 2020 07 13; 1(4):100087.PC

Abstract

Xanthomonas oryzae pathovar oryzae (Xoo) uses transcription activator-like effectors (TALEs) to cause bacterial blight (BB) in rice. In turn, rice has evolved several mechanisms to resist BB by targeting TALEs. One mechanism involves the nucleotide-binding leucine-rich repeat (NLR) resistance gene Xa1 and TALEs. Reciprocally, Xoo has evolved TALE variants, C-terminally truncated versions (interfering TALEs or iTALEs), to overcome Xa1 resistance. However, it remains unknown to what extent the two co-adaptive mechanisms mediate Xoo-rice interactions. In this study, we cloned and characterized five additional Xa1 allelic R genes, Xa2, Xa31(t), Xa14, CGS-Xo1 11 , and Xa45(t) from a collection of rice accessions. Sequence analysis revealed that Xa2 and Xa31(t) from different rice cultivars are identical. These genes and their predicted proteins were found to be highly conserved, forming a group of Xa1 alleles. The XA1 alleles could be distinguished by the number of C-terminal tandem repeats consisting of 93 amino acid residues and ranged from four in XA14 to seven in XA45(t). Xa1 allelic genes were identified in the 3000 rice genomes surveyed. On the other hand, iTALEs could suppress the resistance mediated by Xa1 allelic R genes, and iTALE genes were prevalent (∼95%) in Asian, but not in African Xoo strains. Our findings demonstrate the prominence of a defense mechanism in which rice depends on Xa1 alleles and a counteracting mechanism in which Xoo relies on iTALEs for BB.

Authors+Show Affiliations

Division of Plant Sciences, C. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA.School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, P.R. China. National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.Division of Plant Sciences, C. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA.Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.Division of Plant Sciences, C. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA.Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.Division of Plant Sciences, C. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA. Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

33367250

Citation

Ji, Chonghui, et al. "Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed By Interfering TAL Effectors." Plant Communications, vol. 1, no. 4, 2020, p. 100087.
Ji C, Ji Z, Liu B, et al. Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Commun. 2020;1(4):100087.
Ji, C., Ji, Z., Liu, B., Cheng, H., Liu, H., Liu, S., Yang, B., & Chen, G. (2020). Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Communications, 1(4), 100087. https://doi.org/10.1016/j.xplc.2020.100087
Ji C, et al. Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed By Interfering TAL Effectors. Plant Commun. 2020 07 13;1(4):100087. PubMed PMID: 33367250.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. AU - Ji,Chonghui, AU - Ji,Zhiyuan, AU - Liu,Bo, AU - Cheng,He, AU - Liu,Hua, AU - Liu,Sanzhen, AU - Yang,Bing, AU - Chen,Gongyou, Y1 - 2020/06/20/ PY - 2020/02/23/received PY - 2020/06/03/revised PY - 2020/06/08/accepted PY - 2020/12/28/entrez PY - 2020/12/29/pubmed PY - 2020/12/29/medline KW - TAL effector KW - Xa14 KW - Xa2 KW - Xa45(t) KW - bacterial blight KW - iTAL effector SP - 100087 EP - 100087 JF - Plant communications JO - Plant Commun VL - 1 IS - 4 N2 - Xanthomonas oryzae pathovar oryzae (Xoo) uses transcription activator-like effectors (TALEs) to cause bacterial blight (BB) in rice. In turn, rice has evolved several mechanisms to resist BB by targeting TALEs. One mechanism involves the nucleotide-binding leucine-rich repeat (NLR) resistance gene Xa1 and TALEs. Reciprocally, Xoo has evolved TALE variants, C-terminally truncated versions (interfering TALEs or iTALEs), to overcome Xa1 resistance. However, it remains unknown to what extent the two co-adaptive mechanisms mediate Xoo-rice interactions. In this study, we cloned and characterized five additional Xa1 allelic R genes, Xa2, Xa31(t), Xa14, CGS-Xo1 11 , and Xa45(t) from a collection of rice accessions. Sequence analysis revealed that Xa2 and Xa31(t) from different rice cultivars are identical. These genes and their predicted proteins were found to be highly conserved, forming a group of Xa1 alleles. The XA1 alleles could be distinguished by the number of C-terminal tandem repeats consisting of 93 amino acid residues and ranged from four in XA14 to seven in XA45(t). Xa1 allelic genes were identified in the 3000 rice genomes surveyed. On the other hand, iTALEs could suppress the resistance mediated by Xa1 allelic R genes, and iTALE genes were prevalent (∼95%) in Asian, but not in African Xoo strains. Our findings demonstrate the prominence of a defense mechanism in which rice depends on Xa1 alleles and a counteracting mechanism in which Xoo relies on iTALEs for BB. SN - 2590-3462 UR - https://www.unboundmedicine.com/medline/citation/33367250/Xa1_Allelic_R_Genes_Activate_Rice_Blight_Resistance_Suppressed_by_Interfering_TAL_Effectors_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S2590-3462(20)30110-3 DB - PRIME DP - Unbound Medicine ER -