Tags

Type your tag names separated by a space and hit enter

Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa.
Physiol Plant. 2021 Sep; 173(1):246-258.PP

Abstract

Heavy metal (HM) pollution is a serious agro-economic concern and algae can be used as one of the bioremediating agents as it can grow in different water bodies. In this study, the Scenedesmus acutus and Chlorella pyrenoidosa were exposed to various concentrations of Pb2+ for 96 h and a multidimensional toxicity assessment has been performed by pulse amplitude modulation technique and Fourier transform infrared spectroscopy (FTIR). High-angle annular dark-field scanning transmission electron microscopy coupled energy dispersive spectroscopy (HAADF-S/TEM-EDS) detected intracellular localization of Pb2+ , thus confirming algal bio-accumulation abilities. Sensitivity assay demonstrated that 500 and 400 ppm of Pb2+ as minimum inhibitory concentrations (MIC50) for S. acutus and C. pyrenoidosa, respectively, which inhibited growth (OD) by >50% in 96 h. During bioremoval studies, S. acutus and C. pyrenoidosa were found to remove ∼52 and ∼32% of total Pb2+ , respectively. The particulate analysis of Pb2+ by ICP-OES showed >99.5% biosorption capacity by both the species. The biomass characterization by FTIR showed the involvement of various cell wall functional groups such as hydroxyl, alkane, and C=C groups in the biosorption of Pb2+ by both the species. The noninvasive chlorophyll fluorescence techniques provide a quick insight on heavy metal stress and can be adapted as a rapid detection tool to study the Pb2+ stress. S. acutus strain showed higher tolerance and higher bioremoval capacity than C. pyrenoidosa. However, both the species can be exploited for biosorption of Pb2+ from aquatic streams as an alternative way for low cost Pb2+ recovery systems.

Authors+Show Affiliations

Department of Microbiology, School of Science, RK University, Rajkot, India. Research and Development, Reliance Industries Ltd, Jamnagar, India.Research and Development, Reliance Industries Ltd, Jamnagar, India.Research and Development, Reliance Industries Ltd, Navi Mumbai, India.School of Biotechnology, Presidency University, Kolkata, India.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

33583021

Citation

Purushanahalli Shivagangaiah, Chandrashekharaiah, et al. "Phycoremediation and Photosynthetic Toxicity Assessment of Lead By Two Freshwater Microalgae Scenedesmus Acutus and Chlorella Pyrenoidosa." Physiologia Plantarum, vol. 173, no. 1, 2021, pp. 246-258.
Purushanahalli Shivagangaiah C, Sanyal D, Dasgupta S, et al. Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. Physiol Plant. 2021;173(1):246-258.
Purushanahalli Shivagangaiah, C., Sanyal, D., Dasgupta, S., & Banik, A. (2021). Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. Physiologia Plantarum, 173(1), 246-258. https://doi.org/10.1111/ppl.13368
Purushanahalli Shivagangaiah C, et al. Phycoremediation and Photosynthetic Toxicity Assessment of Lead By Two Freshwater Microalgae Scenedesmus Acutus and Chlorella Pyrenoidosa. Physiol Plant. 2021;173(1):246-258. PubMed PMID: 33583021.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. AU - Purushanahalli Shivagangaiah,Chandrashekharaiah, AU - Sanyal,Debanjan, AU - Dasgupta,Santanu, AU - Banik,Avishek, Y1 - 2021/03/08/ PY - 2021/01/02/revised PY - 2020/09/23/received PY - 2021/02/11/accepted PY - 2021/2/15/pubmed PY - 2021/8/21/medline PY - 2021/2/14/entrez SP - 246 EP - 258 JF - Physiologia plantarum JO - Physiol Plant VL - 173 IS - 1 N2 - Heavy metal (HM) pollution is a serious agro-economic concern and algae can be used as one of the bioremediating agents as it can grow in different water bodies. In this study, the Scenedesmus acutus and Chlorella pyrenoidosa were exposed to various concentrations of Pb2+ for 96 h and a multidimensional toxicity assessment has been performed by pulse amplitude modulation technique and Fourier transform infrared spectroscopy (FTIR). High-angle annular dark-field scanning transmission electron microscopy coupled energy dispersive spectroscopy (HAADF-S/TEM-EDS) detected intracellular localization of Pb2+ , thus confirming algal bio-accumulation abilities. Sensitivity assay demonstrated that 500 and 400 ppm of Pb2+ as minimum inhibitory concentrations (MIC50) for S. acutus and C. pyrenoidosa, respectively, which inhibited growth (OD) by >50% in 96 h. During bioremoval studies, S. acutus and C. pyrenoidosa were found to remove ∼52 and ∼32% of total Pb2+ , respectively. The particulate analysis of Pb2+ by ICP-OES showed >99.5% biosorption capacity by both the species. The biomass characterization by FTIR showed the involvement of various cell wall functional groups such as hydroxyl, alkane, and C=C groups in the biosorption of Pb2+ by both the species. The noninvasive chlorophyll fluorescence techniques provide a quick insight on heavy metal stress and can be adapted as a rapid detection tool to study the Pb2+ stress. S. acutus strain showed higher tolerance and higher bioremoval capacity than C. pyrenoidosa. However, both the species can be exploited for biosorption of Pb2+ from aquatic streams as an alternative way for low cost Pb2+ recovery systems. SN - 1399-3054 UR - https://www.unboundmedicine.com/medline/citation/33583021/Phycoremediation_and_photosynthetic_toxicity_assessment_of_lead_by_two_freshwater_microalgae_Scenedesmus_acutus_and_Chlorella_pyrenoidosa_ DB - PRIME DP - Unbound Medicine ER -