Citation
Liu, Hongfei, et al. "Mechanistic Understanding of Interspecific Interaction Between a C4 Grass and a C3 Legume Via Arbuscular Mycorrhizal Fungi, as Influenced By Soil Phosphorus Availability Using a 13 C and 15 N Dual-labelled Organic Patch." The Plant Journal : for Cell and Molecular Biology, vol. 108, no. 1, 2021, pp. 183-196.
Liu H, Wu Y, Xu H, et al. Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a 13 C and 15 N dual-labelled organic patch. Plant J. 2021;108(1):183-196.
Liu, H., Wu, Y., Xu, H., Ai, Z., Zhang, J., Liu, G., & Xue, S. (2021). Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a 13 C and 15 N dual-labelled organic patch. The Plant Journal : for Cell and Molecular Biology, 108(1), 183-196. https://doi.org/10.1111/tpj.15434
Liu H, et al. Mechanistic Understanding of Interspecific Interaction Between a C4 Grass and a C3 Legume Via Arbuscular Mycorrhizal Fungi, as Influenced By Soil Phosphorus Availability Using a 13 C and 15 N Dual-labelled Organic Patch. Plant J. 2021;108(1):183-196. PubMed PMID: 34293218.
TY - JOUR
T1 - Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a 13 C and 15 N dual-labelled organic patch.
AU - Liu,Hongfei,
AU - Wu,Yang,
AU - Xu,Hongwei,
AU - Ai,Zemin,
AU - Zhang,Jiaoyang,
AU - Liu,Guobin,
AU - Xue,Sha,
Y1 - 2021/08/13/
PY - 2021/03/09/received
PY - 2021/07/19/accepted
PY - 2021/7/23/pubmed
PY - 2021/12/28/medline
PY - 2021/7/22/entrez
KW - 15N
KW - P addition
KW - arbuscular mycorrhizal fungi (AMF)
KW - interspecific plant interaction
KW - mycorrhizal growth response
KW - plant nitrogen acquisition via AMF
SP - 183
EP - 196
JF - The Plant journal : for cell and molecular biology
JO - Plant J
VL - 108
IS - 1
N2 - Arbuscular mycorrhizal fungi (AMF) can improve plant nutrient acquisition, either by directly supplying nutrients to plants or by promoting soil organic matter mineralization, thereby affecting interspecific plant relationships in natural communities. We examined the mechanism by which the addition of P affects interspecific interactions between a C4 grass (Bothriochloa ischaemum, a dominant species in natural grasslands) and a C3 legume (Lespedeza davurica, a subordinate species in natural grasslands) via AMF and plant growth, by continuous 13 C and 15 N labelling, combined with soil enzyme analyses. The results of 15 N labelling revealed that P addition affected the shoot uptake of N via AMF by B. ischaemum and L. davurica differently. Specifically, the addition of P significantly increased the shoot uptake of N via AMF by B. ischaemum but significantly decreased that by L. davurica. Interspecific plant interactions via AMF significantly facilitated the plant N uptake via AMF by B. ischaemum but significantly inhibited that by L. davurica under P-limited soil conditions, whereas the opposite effect was observed in the case of excess P. This was consistent with the impact of interspecific plant interaction via AMF on arbuscular mycorrhizal (AM) benefit for plant growth. Our data indicate that the capability of plant N uptake via AMF is an important mechanism that influences interspecific relationships between C4 grasses and C3 legumes. Moreover, the effect of AMF on the activities of the soil enzymes responsible for N and P mineralization substantially contributed to the consequence of interspecific plant interaction via AMF for plant growth.
SN - 1365-313X
UR - https://www.unboundmedicine.com/medline/citation/34293218/Mechanistic_understanding_of_interspecific_interaction_between_a_C4_grass_and_a_C3_legume_via_arbuscular_mycorrhizal_fungi_as_influenced_by_soil_phosphorus_availability_using_a_13_C_and_15_N_dual_labelled_organic_patch_
DB - PRIME
DP - Unbound Medicine
ER -