Tags

Type your tag names separated by a space and hit enter

Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses.
PLoS Biol. 2021 12; 19(12):e3001065.PB

Abstract

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.

Authors+Show Affiliations

MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom. University of Glasgow School of Veterinary Medicine, Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

34932557

Citation

Herder, Vanessa, et al. "Elevated Temperature Inhibits SARS-CoV-2 Replication in Respiratory Epithelium Independently of IFN-mediated Innate Immune Defenses." PLoS Biology, vol. 19, no. 12, 2021, pp. e3001065.
Herder V, Dee K, Wojtus JK, et al. Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biol. 2021;19(12):e3001065.
Herder, V., Dee, K., Wojtus, J. K., Epifano, I., Goldfarb, D., Rozario, C., Gu, Q., Da Silva Filipe, A., Nomikou, K., Nichols, J., Jarrett, R. F., Stevenson, A., McFarlane, S., Stewart, M. E., Szemiel, A. M., Pinto, R. M., Masdefiol Garriga, A., Davis, C., Allan, J., ... Boutell, C. (2021). Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biology, 19(12), e3001065. https://doi.org/10.1371/journal.pbio.3001065
Herder V, et al. Elevated Temperature Inhibits SARS-CoV-2 Replication in Respiratory Epithelium Independently of IFN-mediated Innate Immune Defenses. PLoS Biol. 2021;19(12):e3001065. PubMed PMID: 34932557.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. AU - Herder,Vanessa, AU - Dee,Kieran, AU - Wojtus,Joanna K, AU - Epifano,Ilaria, AU - Goldfarb,Daniel, AU - Rozario,Christoforos, AU - Gu,Quan, AU - Da Silva Filipe,Ana, AU - Nomikou,Kyriaki, AU - Nichols,Jenna, AU - Jarrett,Ruth F, AU - Stevenson,Andrew, AU - McFarlane,Steven, AU - Stewart,Meredith E, AU - Szemiel,Agnieszka M, AU - Pinto,Rute M, AU - Masdefiol Garriga,Andreu, AU - Davis,Chris, AU - Allan,Jay, AU - Graham,Sheila V, AU - Murcia,Pablo R, AU - Boutell,Chris, Y1 - 2021/12/21/ PY - 2020/11/24/received PY - 2021/12/03/accepted PY - 2022/01/18/revised PY - 2021/12/22/pubmed PY - 2022/1/29/medline PY - 2021/12/21/entrez SP - e3001065 EP - e3001065 JF - PLoS biology JO - PLoS Biol VL - 19 IS - 12 N2 - The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses. SN - 1545-7885 UR - https://www.unboundmedicine.com/medline/citation/34932557/Elevated_temperature_inhibits_SARS_CoV_2_replication_in_respiratory_epithelium_independently_of_IFN_mediated_innate_immune_defenses_ DB - PRIME DP - Unbound Medicine ER -