Tags

Type your tag names separated by a space and hit enter

Impact of Select Geometric and Operational Parameters on Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): A Design of Experiments Analysis Based on Computational Fluid Dynamics Simulations.
Pharm Res. 2022 May; 39(5):919-934.PR

Abstract

PURPOSE

A Design of Experiments (DOE) analysis driven by Computational Fluid Dynamics (CFD) simulations was used to evaluate individual and two-factor interaction effects of varying select geometric and operational parameters on the hydrodynamics in dissolution apparatus 2 (paddle apparatus).

METHODS

Simulations were run with meshing controls and solution strategies retained from a mesh-independent validated baseline model. Distance between vessel and impeller bottom surfaces, impeller offset, vessel radius and impeller rotation speed were considered as input parameters. The velocity magnitudes at four locations near the vessel bottom surface were considered as output parameters. Response surfaces and Pareto charts were generated to understand individual and two-factor interaction effects of input parameters on the output parameters.

RESULTS

Impeller offset has a dominating influence of a linear and quadratic nature on the output parameters and affects overall hydrodynamics. Changes to other input parameters have limited influence on velocity magnitudes at locations closest to the vessel axis and on overall hydrodynamics. However, these parameters have important influences of varying degrees on velocity magnitudes at locations away from the vessel axis.

CONCLUSIONS

The hydrodynamics in Apparatus 2 is influenced differently by different parameters and their combinations. Impeller offset has a stronger influence when compared to parameters that do not alter apparatus symmetry.

Authors+Show Affiliations

US Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, Maryland, 20852-1790, USA. svp@usp.org.US Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, Maryland, 20852-1790, USA.European Directorate for the Quality of Medicines and Healthcare, 7 Allee Kastner, 67000, Strasbourg, France.US Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, Maryland, 20852-1790, USA.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

35578063

Citation

Perivilli, Satish, et al. "Impact of Select Geometric and Operational Parameters On Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): a Design of Experiments Analysis Based On Computational Fluid Dynamics Simulations." Pharmaceutical Research, vol. 39, no. 5, 2022, pp. 919-934.
Perivilli S, Walfish S, Stippler E, et al. Impact of Select Geometric and Operational Parameters on Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): A Design of Experiments Analysis Based on Computational Fluid Dynamics Simulations. Pharm Res. 2022;39(5):919-934.
Perivilli, S., Walfish, S., Stippler, E., & Liddell, M. R. (2022). Impact of Select Geometric and Operational Parameters on Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): A Design of Experiments Analysis Based on Computational Fluid Dynamics Simulations. Pharmaceutical Research, 39(5), 919-934. https://doi.org/10.1007/s11095-022-03272-4
Perivilli S, et al. Impact of Select Geometric and Operational Parameters On Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): a Design of Experiments Analysis Based On Computational Fluid Dynamics Simulations. Pharm Res. 2022;39(5):919-934. PubMed PMID: 35578063.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Impact of Select Geometric and Operational Parameters on Hydrodynamics in Dissolution Apparatus 2 (Paddle Apparatus): A Design of Experiments Analysis Based on Computational Fluid Dynamics Simulations. AU - Perivilli,Satish, AU - Walfish,Steven, AU - Stippler,Erika, AU - Liddell,Mark R, Y1 - 2022/05/16/ PY - 2021/11/08/received PY - 2022/04/21/accepted PY - 2022/5/17/pubmed PY - 2022/6/7/medline PY - 2022/5/16/entrez KW - design of experiments KW - dissolution apparatus 2 KW - hydrodynamics SP - 919 EP - 934 JF - Pharmaceutical research JO - Pharm Res VL - 39 IS - 5 N2 - PURPOSE: A Design of Experiments (DOE) analysis driven by Computational Fluid Dynamics (CFD) simulations was used to evaluate individual and two-factor interaction effects of varying select geometric and operational parameters on the hydrodynamics in dissolution apparatus 2 (paddle apparatus). METHODS: Simulations were run with meshing controls and solution strategies retained from a mesh-independent validated baseline model. Distance between vessel and impeller bottom surfaces, impeller offset, vessel radius and impeller rotation speed were considered as input parameters. The velocity magnitudes at four locations near the vessel bottom surface were considered as output parameters. Response surfaces and Pareto charts were generated to understand individual and two-factor interaction effects of input parameters on the output parameters. RESULTS: Impeller offset has a dominating influence of a linear and quadratic nature on the output parameters and affects overall hydrodynamics. Changes to other input parameters have limited influence on velocity magnitudes at locations closest to the vessel axis and on overall hydrodynamics. However, these parameters have important influences of varying degrees on velocity magnitudes at locations away from the vessel axis. CONCLUSIONS: The hydrodynamics in Apparatus 2 is influenced differently by different parameters and their combinations. Impeller offset has a stronger influence when compared to parameters that do not alter apparatus symmetry. SN - 1573-904X UR - https://www.unboundmedicine.com/medline/citation/35578063/Impact_of_Select_Geometric_and_Operational_Parameters_on_Hydrodynamics_in_Dissolution_Apparatus_2__Paddle_Apparatus_:_A_Design_of_Experiments_Analysis_Based_on_Computational_Fluid_Dynamics_Simulations_ DB - PRIME DP - Unbound Medicine ER -