Tags

Type your tag names separated by a space and hit enter

Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
Cochrane Database Syst Rev. 2022 05 18; 5:CD014841.CD

Abstract

BACKGROUND

The World Health Organization (WHO) End TB Strategy stresses universal access to drug susceptibility testing (DST). DST determines whether Mycobacterium tuberculosis bacteria are susceptible or resistant to drugs. Xpert MTB/XDR is a rapid nucleic acid amplification test for detection of tuberculosis and drug resistance in one test suitable for use in peripheral and intermediate level laboratories. In specimens where tuberculosis is detected by Xpert MTB/XDR, Xpert MTB/XDR can also detect resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.

OBJECTIVES

To assess the diagnostic accuracy of Xpert MTB/XDR for pulmonary tuberculosis in people with presumptive pulmonary tuberculosis (having signs and symptoms suggestive of tuberculosis, including cough, fever, weight loss, night sweats). To assess the diagnostic accuracy of Xpert MTB/XDR for resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin in people with tuberculosis detected by Xpert MTB/XDR, irrespective of rifampicin resistance (whether or not rifampicin resistance status was known) and with known rifampicin resistance.

SEARCH METHODS

We searched multiple databases to 23 September 2021. We limited searches to 2015 onwards as Xpert MTB/XDR was launched in 2020.

SELECTION CRITERIA

Diagnostic accuracy studies using sputum in adults with presumptive or confirmed pulmonary tuberculosis. Reference standards were culture (pulmonary tuberculosis detection); phenotypic DST (pDST), genotypic DST (gDST),composite (pDST and gDST) (drug resistance detection).

DATA COLLECTION AND ANALYSIS

Two review authors independently reviewed reports for eligibility and extracted data using a standardized form. For multicentre studies, we anticipated variability in the type and frequency of mutations associated with resistance to a given drug at the different centres and considered each centre as an independent study cohort for quality assessment and analysis. We assessed methodological quality with QUADAS-2, judging risk of bias separately for each target condition and reference standard. For pulmonary tuberculosis detection, owing to heterogeneity in participant characteristics and observed specificity estimates, we reported a range of sensitivity and specificity estimates and did not perform a meta-analysis. For drug resistance detection, we performed meta-analyses by reference standard using bivariate random-effects models. Using GRADE, we assessed certainty of evidence of Xpert MTB/XDR accuracy for detection of resistance to isoniazid and fluoroquinolones in people irrespective of rifampicin resistance and to ethionamide and amikacin in people with known rifampicin resistance, reflecting real-world situations. We used pDST, except for ethionamide resistance where we considered gDST a better reference standard.

MAIN RESULTS

We included two multicentre studies from high multidrug-resistant/rifampicin-resistant tuberculosis burden countries, reporting on six independent study cohorts, involving 1228 participants for pulmonary tuberculosis detection and 1141 participants for drug resistance detection. The proportion of participants with rifampicin resistance in the two studies was 47.9% and 80.9%. For tuberculosis detection, we judged high risk of bias for patient selection owing to selective recruitment. For ethionamide resistance detection, we judged high risk of bias for the reference standard, both pDST and gDST, though we considered gDST a better reference standard. Pulmonary tuberculosis detection - Xpert MTB/XDR sensitivity range, 98.3% (96.1 to 99.5) to 98.9% (96.2 to 99.9) and specificity range, 22.5% (14.3 to 32.6) to 100.0% (86.3 to 100.0); median prevalence of pulmonary tuberculosis 91.3%, (interquartile range, 89.3% to 91.8%), (2 studies; 1 study reported on 2 cohorts, 1228 participants; very low-certainty evidence, sensitivity and specificity). Drug resistance detection People irrespective of rifampicin resistance - Isoniazid resistance: Xpert MTB/XDR summary sensitivity and specificity (95% confidence interval (CI)) were 94.2% (87.5 to 97.4) and 98.5% (92.6 to 99.7) against pDST, (6 cohorts, 1083 participants, moderate-certainty evidence, sensitivity and specificity). - Fluoroquinolone resistance: Xpert MTB/XDR summary sensitivity and specificity were 93.2% (88.1 to 96.2) and 98.0% (90.8 to 99.6) against pDST, (6 cohorts, 1021 participants; high-certainty evidence, sensitivity; moderate-certainty evidence, specificity). People with known rifampicin resistance - Ethionamide resistance: Xpert MTB/XDR summary sensitivity and specificity were 98.0% (74.2 to 99.9) and 99.7% (83.5 to 100.0) against gDST, (4 cohorts, 434 participants; very low-certainty evidence, sensitivity and specificity). - Amikacin resistance: Xpert MTB/XDR summary sensitivity and specificity were 86.1% (75.0 to 92.7) and 98.9% (93.0 to 99.8) against pDST, (4 cohorts, 490 participants; low-certainty evidence, sensitivity; high-certainty evidence, specificity). Of 1000 people with pulmonary tuberculosis, detected as tuberculosis by Xpert MTB/XDR: - where 50 have isoniazid resistance, 61 would have an Xpert MTB/XDR result indicating isoniazid resistance: of these, 14/61 (23%) would not have isoniazid resistance (FP); 939 (of 1000 people) would have a result indicating the absence of isoniazid resistance: of these, 3/939 (0%) would have isoniazid resistance (FN). - where 50 have fluoroquinolone resistance, 66 would have an Xpert MTB/XDR result indicating fluoroquinolone resistance: of these, 19/66 (29%) would not have fluoroquinolone resistance (FP); 934 would have a result indicating the absence of fluoroquinolone resistance: of these, 3/934 (0%) would have fluoroquinolone resistance (FN). - where 300 have ethionamide resistance, 296 would have an Xpert MTB/XDR result indicating ethionamide resistance: of these, 2/296 (1%) would not have ethionamide resistance (FP); 704 would have a result indicating the absence of ethionamide resistance: of these, 6/704 (1%) would have ethionamide resistance (FN). - where 135 have amikacin resistance, 126 would have an Xpert MTB/XDR result indicating amikacin resistance: of these, 10/126 (8%) would not have amikacin resistance (FP); 874 would have a result indicating the absence of amikacin resistance: of these, 19/874 (2%) would have amikacin resistance (FN).

AUTHORS' CONCLUSIONS

Review findings suggest that, in people determined by Xpert MTB/XDR to be tuberculosis-positive, Xpert MTB/XDR provides accurate results for detection of isoniazid and fluoroquinolone resistance and can assist with selection of an optimised treatment regimen. Given that Xpert MTB/XDR targets a limited number of resistance variants in specific genes, the test may perform differently in different settings. Findings in this review should be interpreted with caution. Sensitivity for detection of ethionamide resistance was based only on Xpert MTB/XDR detection of mutations in the inhA promoter region, a known limitation. High risk of bias limits our confidence in Xpert MTB/XDR accuracy for pulmonary tuberculosis. Xpert MTB/XDR's impact will depend on its ability to detect tuberculosis (required for DST), prevalence of resistance to a given drug, health care infrastructure, and access to other tests.

Authors+Show Affiliations

DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.Honorary Research Fellow, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.FIND, Geneva, Switzerland.FIND, Geneva, Switzerland.DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Pub Type(s)

Journal Article
Meta-Analysis
Review

Language

eng

PubMed ID

35583175

Citation

Pillay, Samantha, et al. "Xpert MTB/XDR for Detection of Pulmonary Tuberculosis and Resistance to Isoniazid, Fluoroquinolones, Ethionamide, and Amikacin." The Cochrane Database of Systematic Reviews, vol. 5, 2022, p. CD014841.
Pillay S, Steingart KR, Davies GR, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev. 2022;5:CD014841.
Pillay, S., Steingart, K. R., Davies, G. R., Chaplin, M., De Vos, M., Schumacher, S. G., Warren, R., & Theron, G. (2022). Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. The Cochrane Database of Systematic Reviews, 5, CD014841. https://doi.org/10.1002/14651858.CD014841.pub2
Pillay S, et al. Xpert MTB/XDR for Detection of Pulmonary Tuberculosis and Resistance to Isoniazid, Fluoroquinolones, Ethionamide, and Amikacin. Cochrane Database Syst Rev. 2022 05 18;5:CD014841. PubMed PMID: 35583175.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. AU - Pillay,Samantha, AU - Steingart,Karen R, AU - Davies,Geraint R, AU - Chaplin,Marty, AU - De Vos,Margaretha, AU - Schumacher,Samuel G, AU - Warren,Rob, AU - Theron,Grant, Y1 - 2022/05/18/ PY - 2022/5/18/entrez PY - 2022/5/19/pubmed PY - 2022/5/21/medline SP - CD014841 EP - CD014841 JF - The Cochrane database of systematic reviews JO - Cochrane Database Syst Rev VL - 5 N2 - BACKGROUND: The World Health Organization (WHO) End TB Strategy stresses universal access to drug susceptibility testing (DST). DST determines whether Mycobacterium tuberculosis bacteria are susceptible or resistant to drugs. Xpert MTB/XDR is a rapid nucleic acid amplification test for detection of tuberculosis and drug resistance in one test suitable for use in peripheral and intermediate level laboratories. In specimens where tuberculosis is detected by Xpert MTB/XDR, Xpert MTB/XDR can also detect resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. OBJECTIVES: To assess the diagnostic accuracy of Xpert MTB/XDR for pulmonary tuberculosis in people with presumptive pulmonary tuberculosis (having signs and symptoms suggestive of tuberculosis, including cough, fever, weight loss, night sweats). To assess the diagnostic accuracy of Xpert MTB/XDR for resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin in people with tuberculosis detected by Xpert MTB/XDR, irrespective of rifampicin resistance (whether or not rifampicin resistance status was known) and with known rifampicin resistance. SEARCH METHODS: We searched multiple databases to 23 September 2021. We limited searches to 2015 onwards as Xpert MTB/XDR was launched in 2020. SELECTION CRITERIA: Diagnostic accuracy studies using sputum in adults with presumptive or confirmed pulmonary tuberculosis. Reference standards were culture (pulmonary tuberculosis detection); phenotypic DST (pDST), genotypic DST (gDST),composite (pDST and gDST) (drug resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed reports for eligibility and extracted data using a standardized form. For multicentre studies, we anticipated variability in the type and frequency of mutations associated with resistance to a given drug at the different centres and considered each centre as an independent study cohort for quality assessment and analysis. We assessed methodological quality with QUADAS-2, judging risk of bias separately for each target condition and reference standard. For pulmonary tuberculosis detection, owing to heterogeneity in participant characteristics and observed specificity estimates, we reported a range of sensitivity and specificity estimates and did not perform a meta-analysis. For drug resistance detection, we performed meta-analyses by reference standard using bivariate random-effects models. Using GRADE, we assessed certainty of evidence of Xpert MTB/XDR accuracy for detection of resistance to isoniazid and fluoroquinolones in people irrespective of rifampicin resistance and to ethionamide and amikacin in people with known rifampicin resistance, reflecting real-world situations. We used pDST, except for ethionamide resistance where we considered gDST a better reference standard. MAIN RESULTS: We included two multicentre studies from high multidrug-resistant/rifampicin-resistant tuberculosis burden countries, reporting on six independent study cohorts, involving 1228 participants for pulmonary tuberculosis detection and 1141 participants for drug resistance detection. The proportion of participants with rifampicin resistance in the two studies was 47.9% and 80.9%. For tuberculosis detection, we judged high risk of bias for patient selection owing to selective recruitment. For ethionamide resistance detection, we judged high risk of bias for the reference standard, both pDST and gDST, though we considered gDST a better reference standard. Pulmonary tuberculosis detection - Xpert MTB/XDR sensitivity range, 98.3% (96.1 to 99.5) to 98.9% (96.2 to 99.9) and specificity range, 22.5% (14.3 to 32.6) to 100.0% (86.3 to 100.0); median prevalence of pulmonary tuberculosis 91.3%, (interquartile range, 89.3% to 91.8%), (2 studies; 1 study reported on 2 cohorts, 1228 participants; very low-certainty evidence, sensitivity and specificity). Drug resistance detection People irrespective of rifampicin resistance - Isoniazid resistance: Xpert MTB/XDR summary sensitivity and specificity (95% confidence interval (CI)) were 94.2% (87.5 to 97.4) and 98.5% (92.6 to 99.7) against pDST, (6 cohorts, 1083 participants, moderate-certainty evidence, sensitivity and specificity). - Fluoroquinolone resistance: Xpert MTB/XDR summary sensitivity and specificity were 93.2% (88.1 to 96.2) and 98.0% (90.8 to 99.6) against pDST, (6 cohorts, 1021 participants; high-certainty evidence, sensitivity; moderate-certainty evidence, specificity). People with known rifampicin resistance - Ethionamide resistance: Xpert MTB/XDR summary sensitivity and specificity were 98.0% (74.2 to 99.9) and 99.7% (83.5 to 100.0) against gDST, (4 cohorts, 434 participants; very low-certainty evidence, sensitivity and specificity). - Amikacin resistance: Xpert MTB/XDR summary sensitivity and specificity were 86.1% (75.0 to 92.7) and 98.9% (93.0 to 99.8) against pDST, (4 cohorts, 490 participants; low-certainty evidence, sensitivity; high-certainty evidence, specificity). Of 1000 people with pulmonary tuberculosis, detected as tuberculosis by Xpert MTB/XDR: - where 50 have isoniazid resistance, 61 would have an Xpert MTB/XDR result indicating isoniazid resistance: of these, 14/61 (23%) would not have isoniazid resistance (FP); 939 (of 1000 people) would have a result indicating the absence of isoniazid resistance: of these, 3/939 (0%) would have isoniazid resistance (FN). - where 50 have fluoroquinolone resistance, 66 would have an Xpert MTB/XDR result indicating fluoroquinolone resistance: of these, 19/66 (29%) would not have fluoroquinolone resistance (FP); 934 would have a result indicating the absence of fluoroquinolone resistance: of these, 3/934 (0%) would have fluoroquinolone resistance (FN). - where 300 have ethionamide resistance, 296 would have an Xpert MTB/XDR result indicating ethionamide resistance: of these, 2/296 (1%) would not have ethionamide resistance (FP); 704 would have a result indicating the absence of ethionamide resistance: of these, 6/704 (1%) would have ethionamide resistance (FN). - where 135 have amikacin resistance, 126 would have an Xpert MTB/XDR result indicating amikacin resistance: of these, 10/126 (8%) would not have amikacin resistance (FP); 874 would have a result indicating the absence of amikacin resistance: of these, 19/874 (2%) would have amikacin resistance (FN). AUTHORS' CONCLUSIONS: Review findings suggest that, in people determined by Xpert MTB/XDR to be tuberculosis-positive, Xpert MTB/XDR provides accurate results for detection of isoniazid and fluoroquinolone resistance and can assist with selection of an optimised treatment regimen. Given that Xpert MTB/XDR targets a limited number of resistance variants in specific genes, the test may perform differently in different settings. Findings in this review should be interpreted with caution. Sensitivity for detection of ethionamide resistance was based only on Xpert MTB/XDR detection of mutations in the inhA promoter region, a known limitation. High risk of bias limits our confidence in Xpert MTB/XDR accuracy for pulmonary tuberculosis. Xpert MTB/XDR's impact will depend on its ability to detect tuberculosis (required for DST), prevalence of resistance to a given drug, health care infrastructure, and access to other tests. SN - 1469-493X UR - https://www.unboundmedicine.com/medline/citation/35583175/Xpert_MTB/XDR_for_detection_of_pulmonary_tuberculosis_and_resistance_to_isoniazid_fluoroquinolones_ethionamide_and_amikacin_ DB - PRIME DP - Unbound Medicine ER -