Tags

Type your tag names separated by a space and hit enter

Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U-Pb geochronology.
Sci Rep. 2022 09 26; 12(1):16026.SR

Abstract

The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North America's Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates in the Campanian, which has been termed the 'zenith of dinosaur diversity'. The wide latitudinal distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology and to address outstanding questions regarding faunal provinciality in connection to paleogeography and climate. Whereas reliable basin-wide correlations are fundamental to investigations of this sort, three decades of radioisotope geochronology of various vintages and limited compatibility has complicated correlation of distant fossil-bearing successions and given rise to contradictory paleobiogeographic and evolutionary hypotheses. Here we present new U-Pb geochronology by the CA-ID-TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age models for six key fossil-bearing formations over a 1600 km latitudinal distance from northwest New Mexico, USA to southern Alberta, Canada. Our high-resolution chronostratigraphic framework for the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional settings and basin evolution histories, significant age overlap exists between the main fossil-bearing intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results support a first-order connection between paleoecologic and fossil diversities and help overcome the chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal provinciality of dinosaur taxa during the Campanian.

Authors+Show Affiliations

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. ramezani@mit.edu.Department of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia.Geology Department, Macalester College, Saint Paul, MN, 55105, USA.Royal Tyrrell Museum of Palaeontology, Drumheller, AB, T0J 0Y0, Canada.Department of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia.

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

36163377

Citation

Ramezani, Jahandar, et al. "Calibrating the Zenith of Dinosaur Diversity in the Campanian of the Western Interior Basin By CA-ID-TIMS U-Pb Geochronology." Scientific Reports, vol. 12, no. 1, 2022, p. 16026.
Ramezani J, Beveridge TL, Rogers RR, et al. Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U-Pb geochronology. Sci Rep. 2022;12(1):16026.
Ramezani, J., Beveridge, T. L., Rogers, R. R., Eberth, D. A., & Roberts, E. M. (2022). Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U-Pb geochronology. Scientific Reports, 12(1), 16026. https://doi.org/10.1038/s41598-022-19896-w
Ramezani J, et al. Calibrating the Zenith of Dinosaur Diversity in the Campanian of the Western Interior Basin By CA-ID-TIMS U-Pb Geochronology. Sci Rep. 2022 09 26;12(1):16026. PubMed PMID: 36163377.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U-Pb geochronology. AU - Ramezani,Jahandar, AU - Beveridge,Tegan L, AU - Rogers,Raymond R, AU - Eberth,David A, AU - Roberts,Eric M, Y1 - 2022/09/26/ PY - 2022/06/19/received PY - 2022/09/06/accepted PY - 2022/9/27/entrez PY - 2022/9/28/pubmed PY - 2022/10/1/medline SP - 16026 EP - 16026 JF - Scientific reports JO - Sci Rep VL - 12 IS - 1 N2 - The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North America's Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates in the Campanian, which has been termed the 'zenith of dinosaur diversity'. The wide latitudinal distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology and to address outstanding questions regarding faunal provinciality in connection to paleogeography and climate. Whereas reliable basin-wide correlations are fundamental to investigations of this sort, three decades of radioisotope geochronology of various vintages and limited compatibility has complicated correlation of distant fossil-bearing successions and given rise to contradictory paleobiogeographic and evolutionary hypotheses. Here we present new U-Pb geochronology by the CA-ID-TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age models for six key fossil-bearing formations over a 1600 km latitudinal distance from northwest New Mexico, USA to southern Alberta, Canada. Our high-resolution chronostratigraphic framework for the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional settings and basin evolution histories, significant age overlap exists between the main fossil-bearing intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results support a first-order connection between paleoecologic and fossil diversities and help overcome the chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal provinciality of dinosaur taxa during the Campanian. SN - 2045-2322 UR - https://www.unboundmedicine.com/medline/citation/36163377/Calibrating_the_zenith_of_dinosaur_diversity_in_the_Campanian_of_the_Western_Interior_Basin_by_CA_ID_TIMS_U_Pb_geochronology_ DB - PRIME DP - Unbound Medicine ER -