Tags

Type your tag names separated by a space and hit enter

Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals.
ACS Appl Mater Interfaces. 2023 Jan 18; 15(2):3152-3162.AA

Abstract

Increasing the crystal resistivity is critically important for enhancing the signal-to-noise ratio and improving the sensing capability of high-temperature piezoelectric sensors based on langasite-type crystals. The resistivity of structural ordered langasite-type crystals is much higher compared to that of the disordered crystals. Here, we selected structural ordered Ca3TaGa3Si2O14 (CTGS) and disordered La3Ga5SiO14 (LGS) as representatives to investigate the microscopic conduction mechanism and further reveal the origin of the different resistivities of the ordered and disordered langasite-type crystals at elevated temperatures. By combining first-principles calculations and experimental investigations, we found that the different conductivity behaviors of the ordered and disordered crystals originate from different types of point defects formed in the crystal and their different contributions to the conductivity. For the disordered LGS crystal, the oxygen vacancies are apt to be formed at high temperatures, promoting the transition of valence electrons and yielding high conductivity. For the ordered CTGS crystal, the dominant TaGa antisite defects can introduce an electron-hole recombination center in the electronic band gap, significantly shortening the carrier lifetime and thus reducing the conductivity. This provides effective guidance to improve the resistivity performance of langasite-type crystals at high temperatures by optimizing the experimental conditions, such as oxygen atmosphere treatment, antisite defect modification, etc.

Authors+Show Affiliations

State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China.State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China.State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China. Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao266237, China.State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China. Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao266237, China.State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

36604858

Citation

Bai, Linyu, et al. "Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals." ACS Applied Materials & Interfaces, vol. 15, no. 2, 2023, pp. 3152-3162.
Bai L, Liu D, Zhao X, et al. Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals. ACS Appl Mater Interfaces. 2023;15(2):3152-3162.
Bai, L., Liu, D., Zhao, X., Yu, F., & Li, Y. (2023). Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals. ACS Applied Materials & Interfaces, 15(2), 3152-3162. https://doi.org/10.1021/acsami.2c19480
Bai L, et al. Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals. ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3152-3162. PubMed PMID: 36604858.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals. AU - Bai,Linyu, AU - Liu,Dongjie, AU - Zhao,Xian, AU - Yu,Fapeng, AU - Li,Yanlu, Y1 - 2023/01/05/ PY - 2023/1/7/pubmed PY - 2023/1/7/medline PY - 2023/1/6/entrez KW - CTGS KW - LGS KW - antisite defect KW - conduction mechanism KW - oxygen vacancy SP - 3152 EP - 3162 JF - ACS applied materials & interfaces JO - ACS Appl Mater Interfaces VL - 15 IS - 2 N2 - Increasing the crystal resistivity is critically important for enhancing the signal-to-noise ratio and improving the sensing capability of high-temperature piezoelectric sensors based on langasite-type crystals. The resistivity of structural ordered langasite-type crystals is much higher compared to that of the disordered crystals. Here, we selected structural ordered Ca3TaGa3Si2O14 (CTGS) and disordered La3Ga5SiO14 (LGS) as representatives to investigate the microscopic conduction mechanism and further reveal the origin of the different resistivities of the ordered and disordered langasite-type crystals at elevated temperatures. By combining first-principles calculations and experimental investigations, we found that the different conductivity behaviors of the ordered and disordered crystals originate from different types of point defects formed in the crystal and their different contributions to the conductivity. For the disordered LGS crystal, the oxygen vacancies are apt to be formed at high temperatures, promoting the transition of valence electrons and yielding high conductivity. For the ordered CTGS crystal, the dominant TaGa antisite defects can introduce an electron-hole recombination center in the electronic band gap, significantly shortening the carrier lifetime and thus reducing the conductivity. This provides effective guidance to improve the resistivity performance of langasite-type crystals at high temperatures by optimizing the experimental conditions, such as oxygen atmosphere treatment, antisite defect modification, etc. SN - 1944-8252 UR - https://www.unboundmedicine.com/medline/citation/36604858/Intrinsic_Defects_and_the_Inducing_Conduction_Mechanism_of_Langasite_Type_High_Temperature_Piezoelectric_Crystals_ DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.