Tags

Type your tag names separated by a space and hit enter

Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH).
Brain Res. 1984 May; 316(1):113-20.BR

Abstract

Cortical synaptic plasma membranes were prepared from rats 3, 7, 10, 14, 21, 28 and 120 days of age. Developmental changes in the fluidity of these membranes were assessed using fluorescence polarization techniques. 1,6-Diphenyl-1,3,5-hexatriene (DPH), a probe of the membrane interior, showed a marked developmental increase in polarization, suggesting a developmental decrease in fluidity. The magnitude of the change from day 3 to the adult was the equivalent of lowering the temperature 7 degrees C. The developmental change in DPH polarization was maintained in liposomes (multilamellar vesicles) prepared from membrane total lipid extracts. In contrast to DPH, 1-[4-(trimethylamino)phenyl]6-phenyl-1,3,5-hexatriene (TMA-DPH), a probe of the membrane surface reported no significant developmental effect on polarization for intact membranes; however, TMA-DPH did report a significant increase in polarization for the total lipid extract liposomes. For the intact membranes, both cis- and trans-parinarate, fluorescent probes of the mid-region of the acyl chains, reported significant developmental increases in polarization. The role of gangliosides in the developmental regulation of fluidity was examined. Gangliosides did not appear to play a role in the developmental changes, but they do have a significant effect (increased polarization) on the membrane surface as reported by TMA-DPH. Fluorescence lifetime and heterogeneity analyses were performed for DPH. There was a small but significant increase in probe lifetime during development. Thus, polarization measurements alone underestimated the increases in membrane order. In an attempt to amplify the differences in membrane organization between the developing and adult membranes, we examined the effects of the membrane perturbant ethanol, on DPH polarization at the different ages. No developmental effect on the ethanol-induced fluidization of synaptic membranes was observed.

Authors

No affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

6733531

Citation

Hitzemann, R J., and R A. Harris. "Developmental Changes in Synaptic Membrane Fluidity: a Comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH)." Brain Research, vol. 316, no. 1, 1984, pp. 113-20.
Hitzemann RJ, Harris RA. Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Brain Res. 1984;316(1):113-20.
Hitzemann, R. J., & Harris, R. A. (1984). Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Brain Research, 316(1), 113-20.
Hitzemann RJ, Harris RA. Developmental Changes in Synaptic Membrane Fluidity: a Comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Brain Res. 1984;316(1):113-20. PubMed PMID: 6733531.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). AU - Hitzemann,R J, AU - Harris,R A, PY - 1984/5/1/pubmed PY - 1984/5/1/medline PY - 1984/5/1/entrez SP - 113 EP - 20 JF - Brain research JO - Brain Res VL - 316 IS - 1 N2 - Cortical synaptic plasma membranes were prepared from rats 3, 7, 10, 14, 21, 28 and 120 days of age. Developmental changes in the fluidity of these membranes were assessed using fluorescence polarization techniques. 1,6-Diphenyl-1,3,5-hexatriene (DPH), a probe of the membrane interior, showed a marked developmental increase in polarization, suggesting a developmental decrease in fluidity. The magnitude of the change from day 3 to the adult was the equivalent of lowering the temperature 7 degrees C. The developmental change in DPH polarization was maintained in liposomes (multilamellar vesicles) prepared from membrane total lipid extracts. In contrast to DPH, 1-[4-(trimethylamino)phenyl]6-phenyl-1,3,5-hexatriene (TMA-DPH), a probe of the membrane surface reported no significant developmental effect on polarization for intact membranes; however, TMA-DPH did report a significant increase in polarization for the total lipid extract liposomes. For the intact membranes, both cis- and trans-parinarate, fluorescent probes of the mid-region of the acyl chains, reported significant developmental increases in polarization. The role of gangliosides in the developmental regulation of fluidity was examined. Gangliosides did not appear to play a role in the developmental changes, but they do have a significant effect (increased polarization) on the membrane surface as reported by TMA-DPH. Fluorescence lifetime and heterogeneity analyses were performed for DPH. There was a small but significant increase in probe lifetime during development. Thus, polarization measurements alone underestimated the increases in membrane order. In an attempt to amplify the differences in membrane organization between the developing and adult membranes, we examined the effects of the membrane perturbant ethanol, on DPH polarization at the different ages. No developmental effect on the ethanol-induced fluidization of synaptic membranes was observed. SN - 0006-8993 UR - https://www.unboundmedicine.com/medline/citation/6733531/Developmental_changes_in_synaptic_membrane_fluidity:_a_comparison_of_16_diphenyl_135_hexatriene__DPH__and_1_[4__trimethylamino_phenyl]_6_phenyl_135_hexatriene__TMA_DPH__ DB - PRIME DP - Unbound Medicine ER -