Tags

Type your tag names separated by a space and hit enter

Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism.
J Biol Chem. 1981 Aug 25; 256(16):8616-25.JB

Abstract

Nitrate reductase (NADPH:nitrate oxidoreductase; EC 1.6.6.1-3) was purified to apparent homogeneity from mycelium of Penicillium chrysogenum. The final preparation catalyzed the NADPH-dependent, FAD-mediated reduction of nitrate with a specific activity of 170-225 units X mg of protein-1. Gel filtration and glycerol density centrifugation yielded, respectively, a Stokes radius of 6.3 nm and an s20,w of 7.4. The molecular weight was calculated to be 199,000. On sodium dodecyl sulfate gels, the enzyme displayed two almost contiguous dye-staining bands corresponding to molecular weights of about 97,000 and 98,000. The enzyme prefers NADPH to NADH (kspec ratio = 2813), FAD to FMN (kspec ratio = 141), FAD (+ NADPH) to FADH2 (kspec ratio = 12,000), and nitrate to chlorate (kspec ratio = 4.33), where the kspec (the specificity constant for a given substrate) represents Vmax/Km. The Penicillium enzyme will also catalyze te NADPH-dependent, FAD-mediated reduction of cytochrome c with a specific activity of 647 units X mg of protein-1 (Kmcyt = 1.25 X 10(-5) M), and the reduced methyl viologen (MVH2, i.e. methyl viologen + dithionite)-dependent, NADPH and FAD-independent reduction of nitrate with a specific activity of 250 units X mg of protein-1 kmMVH2 = 3.5 X 10(-6) M). Initial velocity studies showed intersecting NADPH-FAD and nitrate-FAD reciprocal plot patterns. The NADPH-nitrate pattern was a series of parallel lines at saturating and unsaturating FAD levels. NADP+ was competitive with NADPH, uncompetitive with nitrate (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. Nitrite was competitive with nitrate, uncompetitive with NADPH (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. At unsaturating nitrate and FAD, NADPH exhibited substrate inhibition, perhaps as a result of binding to the FAD site(s). At very low FAD concentrations, low concentrations of NADP+ activated the reaction slightly. The initial velocity and product inhibition patterns are consistent with either of the two kinetic mechanisms. One (rather unlikely) mechanism involves the rapid equilibrium random binding of all ligands with (a) NADP+ and NADPH mutually exclusive, (b) nitrate and nitrite mutually exclusive, (c) the binding of NADPH strongly inhibiting the binding of nitrate and vice versa, (d) the binding of NADPH strongly promoting the binding of nitrite and vice versa, and (e) the binding of nitrate strongly promoting the binding of NADP+ and vice versa...

Authors

No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

6790545

Citation

Renosto, F, et al. "Nitrate Reductase From Penicillium Chrysogenum. Purification and Kinetic Mechanism." The Journal of Biological Chemistry, vol. 256, no. 16, 1981, pp. 8616-25.
Renosto F, Ornitz DM, Peterson D, et al. Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism. J Biol Chem. 1981;256(16):8616-25.
Renosto, F., Ornitz, D. M., Peterson, D., & Segel, I. H. (1981). Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism. The Journal of Biological Chemistry, 256(16), 8616-25.
Renosto F, et al. Nitrate Reductase From Penicillium Chrysogenum. Purification and Kinetic Mechanism. J Biol Chem. 1981 Aug 25;256(16):8616-25. PubMed PMID: 6790545.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism. AU - Renosto,F, AU - Ornitz,D M, AU - Peterson,D, AU - Segel,I H, PY - 1981/8/25/pubmed PY - 1981/8/25/medline PY - 1981/8/25/entrez SP - 8616 EP - 25 JF - The Journal of biological chemistry JO - J Biol Chem VL - 256 IS - 16 N2 - Nitrate reductase (NADPH:nitrate oxidoreductase; EC 1.6.6.1-3) was purified to apparent homogeneity from mycelium of Penicillium chrysogenum. The final preparation catalyzed the NADPH-dependent, FAD-mediated reduction of nitrate with a specific activity of 170-225 units X mg of protein-1. Gel filtration and glycerol density centrifugation yielded, respectively, a Stokes radius of 6.3 nm and an s20,w of 7.4. The molecular weight was calculated to be 199,000. On sodium dodecyl sulfate gels, the enzyme displayed two almost contiguous dye-staining bands corresponding to molecular weights of about 97,000 and 98,000. The enzyme prefers NADPH to NADH (kspec ratio = 2813), FAD to FMN (kspec ratio = 141), FAD (+ NADPH) to FADH2 (kspec ratio = 12,000), and nitrate to chlorate (kspec ratio = 4.33), where the kspec (the specificity constant for a given substrate) represents Vmax/Km. The Penicillium enzyme will also catalyze te NADPH-dependent, FAD-mediated reduction of cytochrome c with a specific activity of 647 units X mg of protein-1 (Kmcyt = 1.25 X 10(-5) M), and the reduced methyl viologen (MVH2, i.e. methyl viologen + dithionite)-dependent, NADPH and FAD-independent reduction of nitrate with a specific activity of 250 units X mg of protein-1 kmMVH2 = 3.5 X 10(-6) M). Initial velocity studies showed intersecting NADPH-FAD and nitrate-FAD reciprocal plot patterns. The NADPH-nitrate pattern was a series of parallel lines at saturating and unsaturating FAD levels. NADP+ was competitive with NADPH, uncompetitive with nitrate (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. Nitrite was competitive with nitrate, uncompetitive with NADPH (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. At unsaturating nitrate and FAD, NADPH exhibited substrate inhibition, perhaps as a result of binding to the FAD site(s). At very low FAD concentrations, low concentrations of NADP+ activated the reaction slightly. The initial velocity and product inhibition patterns are consistent with either of the two kinetic mechanisms. One (rather unlikely) mechanism involves the rapid equilibrium random binding of all ligands with (a) NADP+ and NADPH mutually exclusive, (b) nitrate and nitrite mutually exclusive, (c) the binding of NADPH strongly inhibiting the binding of nitrate and vice versa, (d) the binding of NADPH strongly promoting the binding of nitrite and vice versa, and (e) the binding of nitrate strongly promoting the binding of NADP+ and vice versa... SN - 0021-9258 UR - https://www.unboundmedicine.com/medline/citation/6790545/Nitrate_reductase_from_Penicillium_chrysogenum__Purification_and_kinetic_mechanism_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0021-9258(19)68889-7 DB - PRIME DP - Unbound Medicine ER -