Tags

Type your tag names separated by a space and hit enter

Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats.
Mol Pharmacol. 1983 May; 23(3):748-57.MP

Abstract

The following pathway for benzphetamine (Bz) metabolism in rat hepatic microsomes was established: Bz leads to norbenzphetamine (NorBz) leads to N-hydroxynorbenzphetamine leads to N-benzylethyl-alpha-phenylnitrone leads to 2-nitroso-1-phenylpropane. The last product forms a complex with cytochrome P-450 with an absorbance maximum at 455 nm. Steps 1, 2, and 4 are cytochrome P-450-dependent; Step 3 appears to involve the flavoprotein, mixed-function amine oxidase. Step 2 is partially uncoupled, producing H2O2 at approximately 3 times the rate of N-hydroxylation. Bz is oxidized to NorBz in microsomes from both untreated rats (U-microsomes) and phenobarbital (PB)-treated rats (PB-microsomes), but the 455-nm peak does not appear in U-microsomes until almost all of the Bz has been converted to NorBz; i.e., Bz inhibits the oxidation of NorBz in U- but not in PB-microsomes. The inhibition is competitive. Bz inhibits the oxidation of the nitrone to 2-nitroso-1-phenylpropane in both U- and PB-microsomes; NorBz inhibits this reaction in U-microsomes only. These results can be explained as follows. The substrate affinities of the cytochrome P-450 primarily responsible for the N-demethylation of Bz in U- and PB-microsomes differ markedly. The constitutive cytochrome(s) in U-microsomes has a high affinity for Bz; PB induces both this form and a cytochrome(s) with a lower affinity for Bz. The substrate affinities of these two cytochromes P-450 for NorBz do not differ appreciably. Thus, although both forms of cytochrome P-450 can oxidize Bz and NorBz in PB-microsomes, Bz is primarily oxidized by the constitutive form, whereas NorBz is oxidized primarily by the induced form, thereby relieving competition and increasing the over-all sequential oxidation of Bz. The nitrone appears to be oxidized exclusively by the constitutive form in both U- and PB-microsomes. The current study shows that PB induction of monooxygenase activity need not be due entirely to an increase in the amount of cytochrome P-450 or the substrate selectivity of cytochrome P-450 isozyme(s) responsible for that activity, but that, in at least one case, the metabolism of Bz, PB-induced activity can be due, at least in part, to the induction of a cytochrome P-450 isozyme that relieves substrate inhibition.

Authors

No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

6865917

Citation

Jeffery, E H., and G J. Mannering. "Interaction of Constitutive and Phenobarbital-induced Cytochrome P-450 Isozymes During the Sequential Oxidation of Benzphetamine. Explanation for the Difference in Benzphetamine-induced Hydrogen Peroxide Production and 455-nm Complex Formation in Microsomes From Untreated and Phenobarbital-treated Rats." Molecular Pharmacology, vol. 23, no. 3, 1983, pp. 748-57.
Jeffery EH, Mannering GJ. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Mol Pharmacol. 1983;23(3):748-57.
Jeffery, E. H., & Mannering, G. J. (1983). Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Molecular Pharmacology, 23(3), 748-57.
Jeffery EH, Mannering GJ. Interaction of Constitutive and Phenobarbital-induced Cytochrome P-450 Isozymes During the Sequential Oxidation of Benzphetamine. Explanation for the Difference in Benzphetamine-induced Hydrogen Peroxide Production and 455-nm Complex Formation in Microsomes From Untreated and Phenobarbital-treated Rats. Mol Pharmacol. 1983;23(3):748-57. PubMed PMID: 6865917.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. AU - Jeffery,E H, AU - Mannering,G J, PY - 1983/5/1/pubmed PY - 1983/5/1/medline PY - 1983/5/1/entrez SP - 748 EP - 57 JF - Molecular pharmacology JO - Mol Pharmacol VL - 23 IS - 3 N2 - The following pathway for benzphetamine (Bz) metabolism in rat hepatic microsomes was established: Bz leads to norbenzphetamine (NorBz) leads to N-hydroxynorbenzphetamine leads to N-benzylethyl-alpha-phenylnitrone leads to 2-nitroso-1-phenylpropane. The last product forms a complex with cytochrome P-450 with an absorbance maximum at 455 nm. Steps 1, 2, and 4 are cytochrome P-450-dependent; Step 3 appears to involve the flavoprotein, mixed-function amine oxidase. Step 2 is partially uncoupled, producing H2O2 at approximately 3 times the rate of N-hydroxylation. Bz is oxidized to NorBz in microsomes from both untreated rats (U-microsomes) and phenobarbital (PB)-treated rats (PB-microsomes), but the 455-nm peak does not appear in U-microsomes until almost all of the Bz has been converted to NorBz; i.e., Bz inhibits the oxidation of NorBz in U- but not in PB-microsomes. The inhibition is competitive. Bz inhibits the oxidation of the nitrone to 2-nitroso-1-phenylpropane in both U- and PB-microsomes; NorBz inhibits this reaction in U-microsomes only. These results can be explained as follows. The substrate affinities of the cytochrome P-450 primarily responsible for the N-demethylation of Bz in U- and PB-microsomes differ markedly. The constitutive cytochrome(s) in U-microsomes has a high affinity for Bz; PB induces both this form and a cytochrome(s) with a lower affinity for Bz. The substrate affinities of these two cytochromes P-450 for NorBz do not differ appreciably. Thus, although both forms of cytochrome P-450 can oxidize Bz and NorBz in PB-microsomes, Bz is primarily oxidized by the constitutive form, whereas NorBz is oxidized primarily by the induced form, thereby relieving competition and increasing the over-all sequential oxidation of Bz. The nitrone appears to be oxidized exclusively by the constitutive form in both U- and PB-microsomes. The current study shows that PB induction of monooxygenase activity need not be due entirely to an increase in the amount of cytochrome P-450 or the substrate selectivity of cytochrome P-450 isozyme(s) responsible for that activity, but that, in at least one case, the metabolism of Bz, PB-induced activity can be due, at least in part, to the induction of a cytochrome P-450 isozyme that relieves substrate inhibition. SN - 0026-895X UR - https://www.unboundmedicine.com/medline/citation/6865917/Interaction_of_constitutive_and_phenobarbital_induced_cytochrome_P_450_isozymes_during_the_sequential_oxidation_of_benzphetamine__Explanation_for_the_difference_in_benzphetamine_induced_hydrogen_peroxide_production_and_455_nm_complex_formation_in_microsomes_from_untreated_and_phenobarbital_treated_rats_ L2 - http://molpharm.aspetjournals.org/cgi/pmidlookup?view=long&pmid=6865917 DB - PRIME DP - Unbound Medicine ER -