Tags

Type your tag names separated by a space and hit enter

Regional effects of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine release and metabolism in the rat brain.
Br J Pharmacol 1994; 113(4):1391-9BJ

Abstract

1. The effects of single-dose regimens of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine (DA) release and metabolism were evaluated in the frontal cortex, hypothalamus, nucleus accumbens and striatum. The regimens selected are known to produce substantial behavioural effects. 2. 3-Methoxytyramine (3MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used to assess DA metabolism by catechol-O-methyltransferase and monoamine oxidase respectively. The rate of formation of 3MT was used as an index of synaptic DA. The ratio and sum, respectively, of 3MT and DOPAC rates of formation were used to assess DA reuptake inhibition and turnover. 3. The effects of amphetamine on 3MT production and DOPAC steady-state levels were similar in all regions, suggesting similar pharmacodynamic actions. Amphetamine increased 3MT formation and steady-state levels, and reduced DOPAC steady-state levels. DOPAC formation was significantly reduced only in the nucleus accumbens and striatum. Total DA turnover remained unchanged except in the nucleus accumbens. Apparently, the amphetamine-induced increase in DA release occurred at the expense of intraneuronal DA metabolism and did not require stimulation of synthesis. 4. Nomifensine elevated 3MT formation in all regions. A similar effect was produced by cocaine except in the nucleus accumbens. GBR 12909 elevated 3MT production only in the hypothalamus, the striatum and the nucleus accumbens. 5. Cocaine selectively reduced DOPAC formation in the frontal cortex. Nomifensine increased and reduced, respectively, DOPAC formation in striatum and hypothalamus. GBR 12909 elevated DOPAC formation in all regions except the cortex, where pargyline did not reduce DOPAC levels in GBR 12909-treated rats. 6. Ratios and sum of 3MT and DOPAC rates of formation also exhibited wide regional variations for each drug. In contrast to the other drugs, the ratio was not increased after GBR 12909. Apparently, the DA uptake properties of this drug are poorly related to its in vivo effects on the ratio of 3MTproduction to that of DOPAC, which should increase when DA reuptake is inhibited.7. Total DA turnover was increased by GBR 12909 in the hypothalamus, nucleus accumbens and striatum, while cocaine and nomifensine increased it only in the nucleus accumbens and striatum respectively.8. It is concluded that:(a) 3MT and DOPAC rates of formation provide better indices of DA release and metabolism than do their steady-state concentrations.(b) Some effects of DA uptake blockers on DA transmission, especially those of nomifensine and cocaine, may be attributed to increased DA release.(c) Patterns of regional effects of psychostimulants on the dynamics of DA release and metabolism may be better biochemical correlates of stimulant-induced behaviours than would changes in any single region.

Authors+Show Affiliations

Neuropsychiatry Branch, NIMH Neuroscience Center at St. Elizabeths, Washington, D.C. 20032.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

7889297

Citation

Karoum, F, et al. "Regional Effects of Amphetamine, Cocaine, Nomifensine and GBR 12909 On the Dynamics of Dopamine Release and Metabolism in the Rat Brain." British Journal of Pharmacology, vol. 113, no. 4, 1994, pp. 1391-9.
Karoum F, Chrapusta SJ, Brinjak R, et al. Regional effects of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine release and metabolism in the rat brain. Br J Pharmacol. 1994;113(4):1391-9.
Karoum, F., Chrapusta, S. J., Brinjak, R., Hitri, A., & Wyatt, R. J. (1994). Regional effects of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine release and metabolism in the rat brain. British Journal of Pharmacology, 113(4), pp. 1391-9.
Karoum F, et al. Regional Effects of Amphetamine, Cocaine, Nomifensine and GBR 12909 On the Dynamics of Dopamine Release and Metabolism in the Rat Brain. Br J Pharmacol. 1994;113(4):1391-9. PubMed PMID: 7889297.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Regional effects of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine release and metabolism in the rat brain. AU - Karoum,F, AU - Chrapusta,S J, AU - Brinjak,R, AU - Hitri,A, AU - Wyatt,R J, PY - 1994/12/1/pubmed PY - 1994/12/1/medline PY - 1994/12/1/entrez SP - 1391 EP - 9 JF - British journal of pharmacology JO - Br. J. Pharmacol. VL - 113 IS - 4 N2 - 1. The effects of single-dose regimens of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine (DA) release and metabolism were evaluated in the frontal cortex, hypothalamus, nucleus accumbens and striatum. The regimens selected are known to produce substantial behavioural effects. 2. 3-Methoxytyramine (3MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used to assess DA metabolism by catechol-O-methyltransferase and monoamine oxidase respectively. The rate of formation of 3MT was used as an index of synaptic DA. The ratio and sum, respectively, of 3MT and DOPAC rates of formation were used to assess DA reuptake inhibition and turnover. 3. The effects of amphetamine on 3MT production and DOPAC steady-state levels were similar in all regions, suggesting similar pharmacodynamic actions. Amphetamine increased 3MT formation and steady-state levels, and reduced DOPAC steady-state levels. DOPAC formation was significantly reduced only in the nucleus accumbens and striatum. Total DA turnover remained unchanged except in the nucleus accumbens. Apparently, the amphetamine-induced increase in DA release occurred at the expense of intraneuronal DA metabolism and did not require stimulation of synthesis. 4. Nomifensine elevated 3MT formation in all regions. A similar effect was produced by cocaine except in the nucleus accumbens. GBR 12909 elevated 3MT production only in the hypothalamus, the striatum and the nucleus accumbens. 5. Cocaine selectively reduced DOPAC formation in the frontal cortex. Nomifensine increased and reduced, respectively, DOPAC formation in striatum and hypothalamus. GBR 12909 elevated DOPAC formation in all regions except the cortex, where pargyline did not reduce DOPAC levels in GBR 12909-treated rats. 6. Ratios and sum of 3MT and DOPAC rates of formation also exhibited wide regional variations for each drug. In contrast to the other drugs, the ratio was not increased after GBR 12909. Apparently, the DA uptake properties of this drug are poorly related to its in vivo effects on the ratio of 3MTproduction to that of DOPAC, which should increase when DA reuptake is inhibited.7. Total DA turnover was increased by GBR 12909 in the hypothalamus, nucleus accumbens and striatum, while cocaine and nomifensine increased it only in the nucleus accumbens and striatum respectively.8. It is concluded that:(a) 3MT and DOPAC rates of formation provide better indices of DA release and metabolism than do their steady-state concentrations.(b) Some effects of DA uptake blockers on DA transmission, especially those of nomifensine and cocaine, may be attributed to increased DA release.(c) Patterns of regional effects of psychostimulants on the dynamics of DA release and metabolism may be better biochemical correlates of stimulant-induced behaviours than would changes in any single region. SN - 0007-1188 UR - https://www.unboundmedicine.com/medline/citation/7889297/Regional_effects_of_amphetamine_cocaine_nomifensine_and_GBR_12909_on_the_dynamics_of_dopamine_release_and_metabolism_in_the_rat_brain_ L2 - https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0007-1188&date=1994&volume=113&issue=4&spage=1391 DB - PRIME DP - Unbound Medicine ER -